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Abstract

The quest for more efficient and faster deep learning models has led to the development of
various alternatives to Transformers, one of which is the Mamba model. This paper provides
a comprehensive comparison between Mamba models and Transformers, focusing on their
architectural differences, performance metrics, and underlying mechanisms. It analyzes and
synthesizes findings from extensive research conducted by various authors on these models.
The synergy between Mamba models and the SciPy ecosystem enhances their integration
into science. By providing an in-depth comparison using Python and its scientific ecosystem,
this paper aims to clarify the strengths and weaknesses of Mamba models relative to Trans-
formers. It offers the results obtained along with some thoughts on the possible ramifications
for future research and applications in a range of academic and professional fields.
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1. Introduction
The rapid advancements in deep learning have led to transformative breakthroughs across
various domains, from natural language processing to computer vision. However, the quest
for more efficient and scalable models remains a central challenge, especially when dealing
with long sequences exhibiting long-range dependencies. Transformers, while achieving
remarkable performance in numerous tasks, often suffer from high computational com-
plexity and memory usage, particularly when handling long sequences.

This paper delves into the emerging field of State Space Models (SSMs) as a promising
alternative to Transformers for efficiently capturing long-range dependencies in sequential
data. We provide a comprehensive comparison between the recently developed Mamba
model, based on SSMs, and the widely adopted Transformer architecture, highlighting their
architectural differences, performance characteristics, and underlying mechanisms.

We begin by exploring the fundamental principles of SSMs, emphasizing their ability to rep-
resent and model continuous-time systems through a latent state vector. We then introduce
the HiPPO framework, which extends SSMs to effectively handle long-range dependencies
by leveraging the properties of orthogonal polynomials. This leads us to the discretization
of continuous-time SSMs into discrete-time representations, enabling their implementation
as recurrent models.

Building upon this foundation, we introduce the Structured State Space (S4) model, which
addresses the computational limitations of traditional SSM implementations by employing
a novel parameterization and efficient algorithms. S4′s Normal Plus Low-Rank (NPLR)
decomposition allows for stable and efficient diagonalization of the state matrix, leading to
significant improvements in computational complexity.
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We then discuss the Mamba model, which leverages the selective SSM approach to capture
long-range dependencies in sequences. The Mamba architecture combines aspects of RNNs,
CNNs, and classical state space models, offering a unique blend of efficiency and expres-
sivity.

The paper then presents a detailed comparison of Mamba and Transformer architectures,
highlighting their core components, computational characteristics, and performance impli-
cations. We demonstrate the advantages of Mamba in terms of computational efficiency,
memory usage, and sequence handling, underscoring its potential for tackling complex
scientific and industrial problems.

Finally, we explore the potential applications and future directions of Mamba models, par-
ticularly in the context of scientific computing and data analysis. We highlight the synergy
between Mamba and the SciPy ecosystem, underscoring its ability to enhance the efficiency
and scalability of scientific computing workflows and drive novel scientific discoveries.

2. State Space Models
The central goal of machine learning is to develop models capable of efficiently processing
sequential data across a range of modalities and tasks [1]. This is particularly challenging
when dealing with long sequences, especially those exhibiting long-range dependencies
(LRDs) – where information from distant past time steps significantly influences the
current state or future predictions.  Examples of such sequences abound in real-world
applications, including speech, video, medical, time series, and natural language. However,
traditional models struggle to effectively handle such long sequences.

Recurrent Neural Networks (RNNs) [2], often considered the natural choice for sequential
data, are inherently stateful and require only constant computation per time step. However,
they are slow to train and suffer from the well-known “vanishing gradient problem”,
which limits their ability to capture LRDs. Convolutional Neural Networks (CNNs) [3],
while efficient for parallelizable training, are not inherently sequential and struggle with
long context lengths, resulting in more expensive inference. Transformers [4], despite their
recent success in various tasks, typically require specialized architectures and attention
mechanisms to handle LRDs, which significantly increase computational complexity and
memory usage.

A promising alternative for tackling LRDs in long sequences is State Space Models (SSMs)
[5], a foundational mathematical framework deeply rooted in diverse scientific disciplines
like control theory and computational neuroscience. SSMs provide a continuous-time rep-
resentation of a system’s state and evolution, offering a powerful paradigm for capturing
LRDs. While SSMs and S4s does not prevent the vanishing gradient problem but it reduces
the impact with the help of HiPPO framework and NPLR Parametrization. They represent a
system’s behavior in terms of its internal state and how this state evolves over time. SSMs
are widely used in various fields, including control theory, signal processing, and computa-
tional neuroscience.

2.1. Continuous-time Representation

The continuous-time SSM describes a system’s evolution using differential equations.  It
maps a continuous-time input signal  𝑢(𝑡) to an output signal  𝑦(𝑡)  through a latent
state 𝑥(𝑡).  The state is an internal representation that captures the system’s history and
influences its future behavior.

The core equations of the continuous-time SSM are:

• State Evolution:
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𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (1)

• Output Generation:

  
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (2)

where:

• 𝑥(𝑡) is the state vector at time 𝑡, belonging to a 𝑁 -dimensional space.
• 𝑢(𝑡) is the input signal at time 𝑡.
• 𝑦(𝑡) is the output signal at time 𝑡.
• 𝐴 is the state matrix, controlling the evolution of the state vector 𝑥(𝑡).
• 𝐵 is the control matrix, mapping the input signal 𝑢(𝑡) to the state space.
• 𝐶 is the output matrix, projecting the state vector 𝑥(𝑡) onto the output space.
• 𝐷 is the command matrix, directly mapping the input signal 𝑢(𝑡) to the output. (For

simplicity, we often assume 𝐷 = 0, as 𝐷𝑢(𝑡) can be viewed as a skip connection.)

This system of equations defines a continuous-time mapping from input 𝑢(𝑡) to output
𝑦(𝑡) through a latent state 𝑥(𝑡). The state matrix 𝐴 plays a crucial role in determining the
dynamics of the system and its ability to capture long-range dependencies.

2.2. HiPPO Framework for Long-Range Dependencies

Despite their theoretical elegance, naive applications of SSMs often struggle with long
sequences. This is due to the inherent limitations of simple linear differential equations in
capturing long-range dependencies (LRDs). To overcome this, the High-Order Polynomial
Projection Operator (HiPPO) [6] framework provides a principled approach for designing
SSMs specifically suited for LRDs.

HiPPO focuses on finding specific state matrices 𝐴 that allow the state vector 𝑥(𝑡) to
effectively memorize the history of the input signal 𝑢(𝑡). It achieves this by leveraging the
properties of orthogonal polynomials. The HiPPO framework derives several structured
state matrices, including:

• HiPPO-LegT (Translated Legendre): Based on Legendre polynomials, this matrix
enables the state to capture the history of the input within sliding windows of a fixed
size.

• HiPPO-LagT (Translated Laguerre): Based on Laguerre polynomials, this matrix
allows the state to capture a weighted history of the input, where older information
decays exponentially.

• HiPPO-LegS (Scaled Legendre): Based on Legendre polynomials, this matrix captures
the history of the input with respect to a linearly decaying weight.

2.3. Discrete-time SSM: Recurrent Representation

To apply SSMs on discrete-time data sequences (𝑢0, 𝑢1, …), it’s necessary to discretize the
continuous-time model. This involves converting the differential equations into difference
equations, where the state and input are defined at discrete time steps. One common
discretization method is the bilinear transform, also known as the Tustin method. This
transform approximates the derivative 𝑥′(𝑡) by a weighted average of the state values at two
consecutive time steps, introducing a step size 𝛿 that represents the time interval between
samples.

SSMs Figure 1 typically require integration within a broader neural network architecture
due to their limited inherent capabilities. From a high-level perspective, SSMs exhibit func-
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tional similarities to linear Recurrent Neural Networks (RNNs). Both architectures process
sequential input tokens, transforming and combining the previous hidden state represen-
tation with the embedding of the current input. This iterative processing characteristic
aligns SSMs with the sequential nature of RNNs.

SSMs have 4 sets of matrices and parameters to process the input namely
Δ, 𝐴, 𝐵, 𝐶 (3)

where:

• Δ acts as a gating factor, selectively weighting the contribution of matrices 𝐴 and 𝐵
at each step. This allows the model to dynamically adjust the influence of past hidden
states and current inputs.

• 𝐴 represents the state transition matrix. When modulated by Δ, it governs the propa-
gation of information from the previous hidden state to the current hidden state.

• 𝐵 denotes the input matrix. After modulation by Δ, it determines how the current
input is integrated into the hidden state.

• 𝐶 serves as the output matrix. It maps the hidden state to the model’s output, effec-
tively transforming the internal representations into a desired output space.

The discretization technique facilitates the transformation of continuous differential equa-
tions into discrete time-step representations, leveraging the Δ matrix to decompose the
infinitely continuous process into a discrete time-stepped process, thereby reducing com-
putational complexity. In this approach, the 𝐴 and 𝐵 steps undergo discretization through
the following equations:

𝐴 = exp(Δ𝐴) (4)

Figure 1.  This diagram illustrates the architecture of the Selective State Space Model (SSM). Each input
sequence (blue boxes) is processed by an SSM layer (green) after being multiplied by matrix 𝐵. The
state space module (SSM) handles sequential data and captures long-range dependencies, after which the
output (yellow boxes) undergoes a transformation by matrix 𝐶. The final outputs (red boxes) are combined
to produce the model’s output 𝑦. This setup emphasizes the modular and repetitive nature of SSM layers,
highlighting their role in sequence modeling.
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𝐵 = (Δ𝐴)−1(exp(Δ𝐴) − 𝐼) ⋅ Δ𝐵 (5)

This discretization scheme effectively reduces the continuous differential equation to a
series of discrete time steps, enabling numerical approximations to be computed iteratively.
By segmenting the continuous process into finite increments, the computational burden is
alleviated, rendering the problem more tractable for numerical analysis and simulation.

2.4. Training SSMs

While the recurrent representation provides a computationally efficient way to perform
inference with an SSM, it is not optimal for training due to its sequential nature.  To
overcome this, SSM leverages the connections between linear time-invariant (LTI) SSMs and
convolution. The convolutional representation allows for efficient parallel training using
Fast Fourier Transform (FFT) algorithms. However, the main challenge lies in computing the
SSM convolution kernel 𝐾. Computing it naively with 𝐿 successive matrix multiplications
by  𝐴  results in 𝑂(𝑁2 ∗ 𝐿) operations and 𝑂(𝑁𝐿) memory – a significant computational
bottleneck for long sequences.

The state-space models (SSMs) compute the output using a linear recurrent neural network
(RNN) architecture, which operates on a hidden state Δ. In this formulation, the hidden
state propagates through a linear equation of the following form:

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡 (6)

where

• ℎ𝑡 is hidden state matrix at time step t
• 𝑥𝑡 is input vector at time t

The initial hidden state ℎ0 is computed as:

ℎ0 = 𝐴ℎ−1 + 𝐵𝑥0 = 𝐵𝑥0 (7)

Subsequently, the hidden state at the next time step, ℎ1, is obtained through the recursion:

ℎ1 = 𝐴ℎ0 + 𝐵𝑥1 = 𝐴𝐵 (8)

The output 𝑌𝑡 is then calculated from the hidden state ℎ𝑡 using the following linear trans-
formation:

𝑦𝑡 = 𝐶ℎ𝑡 (9)

• C is the output control matrix
• 𝑦𝑡 is output vector at time t
• ℎ𝑡 is the Internal hidden state at time t

𝑦0 = 𝐶ℎ0 = 𝐶𝐵𝑥0

𝑦1 = 𝐶ℎ1 = 𝐶𝐴𝐵𝑥0 + 𝐶𝐵𝑥1

𝑦2 = 𝐶𝐴2𝐵𝑥0 + 𝐶𝐴𝐵𝑥1 + 𝐶𝐵𝑥2

⋮
𝑦𝑡 = 𝐶𝐴𝑡𝐵𝑥0 + 𝐶𝐴𝑡−1𝐵𝑥1 + … + 𝐶𝐴𝐵𝑥𝑡−1 + 𝐶𝐵𝑥𝑡

(10)

𝑌 = 𝐾 ⋅ 𝑋 (11)

where :

• 𝑋 is the input matrix i.e. [𝑥0, 𝑥1, …, 𝑥𝐿]
• 𝐾 = (𝐶𝐵, 𝐶𝐴𝐵, …, 𝐶𝐴𝐿−1𝐵)

This linear RNN architecture effectively captures the temporal relationships present in
sequential data and thus enabling the model to learn and ensure the propagation of the
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key-relevant information through the recurrent connections. This linear formulation has
led to scalable implementations, which in turn take use of matrix operations’ computing
efficiency.

3. S4: A Structured State Space Model
The theoretical advantages of State Space Models (SSMs) [5] for handling long sequences,
particularly their ability to capture long-range dependencies, make them a promising alter-
native to traditional sequence models. However, the computational limitations of existing
SSM implementations, such as the LSSL, hinder their widespread adoption. The Structured
State Space (S4) model aims to overcome these limitations by introducing novel parameter-
ization [7] and efficient algorithms that preserve the theoretical strengths of SSMs [8] .

4. Diagonalization Problem
The core computational bottleneck in SSMs stems from repeated matrix multiplication by
the state matrix 𝐴 when calculating the convolution kernel 𝐾. If 𝐴 were a diagonal matrix,
this computation would become significantly more tractable. Diagonal matrices allow for
efficient power calculations as well as multiplication by a vector, resulting in a time com-
plexity of 𝑂(𝑁) for 𝑁  dimensions.

Diagonalization involves finding a change of basis that transforms 𝐴 into a diagonal form.
However, this approach faces significant challenges when 𝐴 is non-normal. Non-normal
matrices have complex eigenstructures, which can lead to several problems:

• Numerically unstable diagonalization: Diagonalizing non-normal matrices can be
numerically unstable, especially for large matrices. This is because the eigenvectors
may be highly sensitive to small errors in the matrix, leading to large errors in the
computed eigenvalues and eigenvectors.

• Exponentially large entries: The diagonalization of some non-normal matrices, in-
cluding the HiPPO matrices, can involve matrices with entries that grow exponentially
with the dimension 𝑁 . This can lead to overflow issues during computation and render
the diagonalization infeasible in practice.

Therefore, naive diagonalization of non-normal matrices in SSMs is not a viable solution
for efficient computation.

5. The S4 Parameterization: Normal Plus Low-Rank (NPLR)
S4 overcomes the challenges of directly diagonalizing non-normal matrices by introducing
a novel parameterization [7].  It decomposes the state matrix A into a sum of a normal
matrix and a low-rank term. This decomposition allows for efficient computation while
preserving the structure necessary to handle long-range dependencies. The S4 parameter-
ization is expressed as follows:

• SSM convolution kernel

𝐾 = 𝜅𝐿(𝐴, 𝐵, 𝐶) med med med for med med med𝐴 = 𝑉 Λ𝑉 ∗ − 𝑃𝑄𝑇 (12)

where:

• V is a unitary matrix that diagonalizes the normal matrix.
• Λ is a diagonal matrix containing the eigenvalues of the normal matrix.
• P and Q are low-rank matrices that capture the non-normal component.
• These matrices HiPPO - 𝐿𝑒𝑔𝑆, 𝐿𝑒𝑔𝑇 , 𝐿𝑎𝑔𝑇  all satisfy 𝑟 = 1 or 𝑟 = 2.
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This decomposition allows for efficient computation because:

• Normal matrices are efficiently diagonalizable: Normal matrices can be diagonal-
ized stably and efficiently using unitary transformations.

• Low-rank corrections are tractable: The low-rank term can be corrected using the
Woodbury identity, a powerful tool for inverting matrices perturbed by low-rank
terms.

6. S4 Algorithms and Complexity
S4 leverages its NPLR parameterization to develop efficient algorithms for computing both
the recurrent representation (𝐴) and the convolutional kernel (𝐾).

6.1. S4 Recurrence

The bilinear transform is used to discretize the state matrix in order to construct the S4
recurrent representation. The important thing to note is that, because of the Woodbury
identity, the inverse of a DPLR matrix does not result in any change in the matrix. Therefore,
the discretized state matrix is the product of two DPLR matrices, allowing for efficient
matrix-vector multiplication in O(N) time.

6.2. Parallel Associative Scan

The linear recurrent behavior inherent in the previous formulation is not efficiently imple-
mentable on GPU architectures, which favor parallel computing paradigms. This limitation
renders convolutions inefficient in such environments. To address this challenge, the par-
allel associative scan technique is employed, which introduces a prefix sum-like operation
to scan for all prefix sums. Although inherently sequential, this approach leverages an effi-
cient parallel algorithm model to parallelize the SSM convolution, resulting in a significant
performance boost. The parallel associative scan method exhibits linear time and space
complexity, making it a computationally efficient solution.

SSM

𝑦𝑡 = 𝐶𝐴𝑡𝐵𝑥0 + 𝐶𝐴𝑡−1𝐵𝑥1 + … + 𝐶𝐴𝐵𝑥𝑡−1 + 𝐶𝐵𝑥𝑡 (13)

Selective SSM

𝑦𝑡 = 𝐶0𝐴𝑡𝐵0𝑥0 + 𝐶1𝐴𝑡−1𝐵1𝑥1 + …
input -dependent𝐵 and𝐶 matrix

(14)

By leveraging the parallel associative scan technique [9], the selective SSM formulation can
be efficiently implemented on parallel architectures, such as GPUs. This approach enables
the exploitation of the inherent parallelism in the computation, leading to significant
performance gains, particularly for large-scale applications and time-series data processing
tasks.

6.3. S4 Convolution

S4′s convolutional representation is computed through a series of steps:

1. SSM Generating Function: Instead of directly computing the convolution kernel
𝐾, S4 calculates its spectrum by evaluating its truncated generating function. The
generating function allows for efficiently expressing powers of 𝐴 as a single matrix
inverse.

2. Woodbury Correction: The Woodbury identity is used to correct the low-rank term
in the generating function, reducing the problem to evaluating the generating func-
tion for a diagonal matrix.
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3. Cauchy Kernel: The generating function for a diagonal matrix is equivalent to com-
puting a Cauchy kernel, which is a well-studied problem with efficient, numerically
stable algorithms.

This process reduces the complexity of computing the convolution kernel 𝐾 to 𝑂(𝑁 + 𝐿)
operations and 𝑂(𝑁 + 𝐿) memory, significantly improving upon the LSSL’s complexity.

6.4. S4 Architecture Details

The S4 layer, as defined by its NPLR parameterization, implements a mapping from a 1-D
input sequence to a 1-D output sequence. To handle multiple features, the S4 architecture
utilizes 𝐻 independent copies of the S4 layer, each processing one feature dimension. These
outputs are then mixed using a position-wise linear layer, similar to a depthwise-separable
convolution. This architecture allows for efficient computation while preserving the ability
to capture relationships between different features.

Non-linear activation functions are typically added between S4 layers to enhance the
model’s expressivity, further paralleling the structure of CNNs. Thus, the overall deep S4
model resembles a depthwise-separable CNN, but with global convolution kernels that
effectively capture long-range dependencies.

In summary, S4 offers a structured and efficient approach to SSMs, overcoming the limita-
tions of previous implementations while preserving their theoretical strengths. Its NPLR
parameterization allows for stable and efficient computation, while its efficient algorithms
significantly reduce computational complexity. S4′s ability to handle multiple features and
its resemblance to CNNs further contribute to its versatility and potential as a powerful
general sequence modeling solution.

7. Mamba Model Architecture
One Mamba Layer [10] Figure 2 is composed of a selective state-space module and several
auxiliary layers. Initially, a linear layer doubles the dimensionality of the input token em-
bedding, increasing the dimensionality from 64 to 128. This higher dimensionality provides
the network with an expanded representational space, potentially enabling the separation
of previously inseparable classes. Subsequently, a canonical 1D convolution layer processes
the output of the previous layer, manipulating the dimensions within the linearly upscaled
128-dimensional vector. This convolution layer employs the SiLU (Sigmoid-weighted
Linear Unit) activation function [11]. The output of the convolution is then processed by
the selective state-space module, which operates akin to a linear recurrent neural network
(RNN).

Mamba then performs a gated multiplication operation. The input is passed through
another linear layer and an activation function, and the resulting output is multiplied
element-wise with the output of the S4 module. The authors’ intuition behind this operation
is that the multiplication serves as a measure of similarity between the output of the
SSM module, which contains information from previous tokens, and the embedding of
the current token. Finally, a linear layer reduces the dimensionality from 128 back to 64.
To construct the complete Mamba architecture, multiple layers are stacked on top of one
another, similar to the Transformer architecture, where Transformer layers are stacked
sequentially.
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Figure 2.  This diagram represents the Mamba architecture, illustrating the flow from input through
convolutional and sequence transformation layers, with nonlinear activation functions, to produce the
final output via linear projection.

8. Key Differences Between Mamba and Transformer Architec-
tures
In this section, we present a detailed comparison of the Mamba and Transformer architec-
tures. We focus on their core components, computational characteristics, and performance
implications. Visualizations and equations are provided to illustrate these differences
clearly.

Self attention, feed forward Neural Networks, normalization, residual layers and so on.

8.1. Architecture Overview

8.1.1. Transformer Architecture:

Transformers Figure  3 rely heavily on attention mechanisms to model dependencies
between input and output sequences. A better understanding of the code will be of great
help [12].

The core components include:

• Multi-Head Self-Attention: Allows the model to focus on different parts of the input
sequence.

• Position-wise Feed-Forward Networks: Applied to each position separately.
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Figure 3.  This diagram illustrates the transformer model architecture, featuring encoder and decoder
layers with multi-head attention mechanisms, positional encoding, and feed-forward networks, culminat-
ing in output probabilities via a softmax layer.

• Positional Encoding: Adds information about the position of each token in the
sequence, as Transformers lack inherent sequential information due to the parallel
nature of their processing.

8.1.2. Mamba Architecture:

Mamba models Figure  2 are based on Selective State Space Models (SSMs), combining
aspects of RNNs, CNNs, and classical state space models. Key features include:
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• Selective State Space Models: Allow input-dependent parameterization to selectively
propagate or forget information.

• Recurrent Mode: Efficient recurrent computations with linear scaling.
• Hardware-aware Algorithm: Optimized for modern hardware to avoid inefficiencies

from the Flash Attention 2 Paper.

8.2. Key Differences

8.2.1. 1. Attention Mechanisms vs. Selective State Space Models:

Transformers use multi-head self-attention to capture dependencies within the sequence:

Attention(𝑄, 𝐾, 𝑉 ) = softmax(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (15)

Where 𝑄, 𝐾, and 𝑉  are the query, key, and value matrices, respectively, and 𝑑 is the dimen-
sion of the key vectors.

Mamba Models replace attention with selective state space parameters that change based
on the input:

ℎ′(𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥(𝑡) (16)

𝑦(𝑡) = 𝐶ℎ(𝑡) (17)

Here, 𝐴, 𝐵, and 𝐶 are state space parameters that vary with the input, allowing for efficient
handling of long sequences without the quadratic complexity of attention mechanisms.

8.2.2. 2. Computational Complexity:

Feature Architecture Complexity Inference Speed Training Speed

Transformer Attention-based High O(n) O(n²)

Mamba SSM-based Lower O(1) O(n)

8.2.3. 3. Sequence Handling and Memory Efficiency:

Transformers require a cache of previous elements to handle long-range dependencies,
leading to high memory usage.

Mamba Models utilize selective state spaces to maintain relevant information over long
sequences without the need for extensive memory caches, providing a more memory-
efficient solution.

Mamba integrates selective state spaces directly into the neural network architecture. The
selective mechanism allows the model to focus on relevant parts of the input dynamically.

There are other competing architectures that aim to replace or complement Transformers,
such as Retentive Network [13], Griffin [14], Hyena [15], and RWKV [16]. These architec-
tures propose alternative approaches to modeling sequential data, leveraging techniques
like gated linear recurrences, local attention, and reinventing recurrent neural networks
(RNNs) for the Transformer era.

9. Mamba’s Synergy with Scipy
Scipy [17] provides a robust ecosystem for scientific computing in Python, offering a
wide range of tools and libraries for numerical analysis, signal processing, optimization,
and more. This ecosystem serves as a fertile ground for the development and integration
of Mamba, facilitating its training, evaluation, and deployment in scientific applications.

July 10, 2024 342



Mamba Models a possible replacement for Transformers?  | Das et al., 2024

Leveraging Scipy’s powerful data manipulation and visualization capabilities, Mamba
models can be seamlessly integrated into scientific workflows, enabling in-depth analysis,
rigorous statistical testing, and clear visualization of results.

The combination of Mamba’s language understanding capabilities and Scipy’s scientific
computing tools opens up new avenues for exploring large-scale scientific datasets com-
monly encountered in scientific research domains such as astronomy, medicine, and
beyond, extracting insights, and advancing scientific discoveries.

9.1. Potential Applications and Future Directions:

• Efficient Processing of Large Scientific Datasets: Mamba’s ability to handle long-
range dependencies makes it well-suited for analyzing and summarizing vast amounts
of scientific data, such as astronomical observations, medical records, or experimental
results, thereby reducing the complexity and enabling more efficient analysis.

• Enhancing Model Efficiency and Scalability: Integrating Mamba with Scipy’s opti-
mization and parallelization techniques can potentially improve the efficiency and
scalability of language models, enabling them to handle increasingly larger datasets
and more complex scientific problems.

• Advancing Scientific Computing through Interdisciplinary Collaboration: The
synergy between Mamba and Scipy fosters interdisciplinary collaboration between
natural language processing researchers, scientific computing experts, and domain-
specific scientists, paving the way for novel applications and pushing the boundaries
of scientific computing.

The diverse range of models as U-Mamba [18], Vision Mamba[19], VMamba [20], Mam-
baByte [21]and Jamba [22], highlights the versatility and adaptability of the Mamba
architecture. These variants have been designed to enhance efficiency, improve long-range
dependency modeling, incorporate visual representations, explore token-free approaches,
integrate Fourier learning, and hybridize with Transformer components.

10. Conclusion
Mamba models present a compelling alternative to Transformers for processing long
sequences, particularly in scientific computing. Their use of selective state spaces delivers
linear time complexity and superior memory efficiency, making them faster and less
resource-intensive than Transformers for lengthy data. Mamba’s flexible architecture en-
ables easy integration with scientific workflows and scalability. However, their complexity
demands further research to streamline implementation and encourage wider adoption.
While not yet a complete replacement for Transformers, Mamba models offer a powerful
tool for analyzing complex scientific data where efficiency and integration with scientific
tools are paramount, making their continued development crucial.
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