
Open Access | https://doi.org/10.25080/JXDK4427

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Echodataflow: Recipe-based Fisheries
Acoustics Workflow Orchestration
Valentina Staneva ¹ , Soham Butala ¹ , Landung (Don) Setiawan ² , and Wu-
Jung Lee ³

¹ eScience Institute, University of Washington, ² Scientific Software Engineering Center, University of
Washington, ³ Applied Physics Laboratory, University of Washington

Published Jul 10, 2024

Correspondence to
Valentina Staneva
vms16@uw.edu

Open Access

Copyright © 2024 Staneva et
al.. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

With the influx of large data from multiple instruments and experiments, scientists are
wrangling complex data pipelines that are context-dependent and non-reproducible. We
demonstrate how we leverage Prefect [1], a modern orchestration framework, to facilitate
fisheries acoustics data processing. We built a Python package Echodataflow [2] which 1)
allows users to specify workflows and their parameters through editing text “recipes” which
provide transparency and reproducibility of the pipelines; 2) supports scaling of the work-
flows while abstracting the computational infrastructure; 3) provides monitoring and logging
of the workflow progress. Under the hood, Echodataflow uses Prefect to execute the work-
flows while providing a domain-friendly interface to facilitate diverse fisheries acoustics use
cases. We demonstrate the features through a typical ship survey data processing pipeline.

Keywords prefect, workflow orchestration, dask, zarr, fisheries acoustics

1. Motivation
Acoustic fisheries surveys and ocean observing systems collect terabytes of echosounder
(water column sonar) data that require custom processing pipelines to obtain the distrib%
utions and abundance of fish and zooplankton in the ocean [3]. The data are collected by
sending an acoustic signal into the ocean which scatters from objects in the water column
and the returning “echo” is recorded. Although data usually have similar dimensions:
range, time, location, and frequency, and can be stored into multi%dimensional arrays, the
exact format varies based on the data collection scheme and the exact instrument used.
Fisheries ship surveys, for example, follow pre%defined paths (transects) and can span
several months (Figure 1 left). Ocean moorings, on the other hand, have instruments
at fixed locations and can collect data continuously at specified intervals for months
(Figure 1 right). Uncrewed Surface Vessels (USVs) (e.g. Saildrone [4], DriX [5], Figure 1
middle) can autonomously collect echosounder data over large spatial regions. In all these
scenarios, data are usually collected with similar instruments, and there is an overlap
between the initial processing procedures. However, there are always variations associated
with the specific data collection format, end research needs, data volume, and available
computational infrastructure. For example, ship surveys may require grouping data along
individual transects and exluding other data; they may also have varying range/depth
resulting into data arrays of different dimensions. Mooring data are more regular, but their
volume is large, and studies may require organizing data into daily patterns to analyze
long term trends. USVs collect data at varying speeds thus requiring converting the time
dimension to distance in order to have consistent echo patterns. The time when the data
needs to be processed also affects the workflows: on premise/realtime applications usually
require processing small data subsets at a time with limited computing resources; historical

July 10, 2024 349

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/JXDK4427
mailto:vms16@uw.edu
mailto:vms16@uw.edu
mailto:sbutala@uw.edu
mailto:sbutala@uw.edu
mailto:landungs@uw.edu
mailto:landungs@uw.edu
mailto:leewj@uw.edu
mailto:leewj@uw.edu
mailto:vms16@uw.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

Figure 1. Data Collection Schemes: left, ship survey transect map for the Joint U.S.-Canada Integrated
Ecosystem and Pacific Hake Acoustic Trawl Survey [6] middle, USV path map for Saildrone west coast
survey [7] right, map and instrument diagram for a stationary ocean observing system (Ocean Observa-
tories Initiative Cabled and Endurance Arrays [8], Image Credit: Center for Environmental Visualization,
University of Washington)

analyses require processing large datasets, and can benefit from cluster/cloud computing.
The various scenarios demand different data workflows, and adapting from one setting to
another is not trivial.

2. Fisheries Acoustics Workflows
Fisheries acoustics scientists traditionally have had go%to tools and procedures for their data
processing and analysis, mostly relying on computation on a local computer. However, as
the diversity of computing and data storage resources grows and the field becomes more
interdisciplinary (it involves scientists with backgrounds in physics, biology, oceanography,
acoustics, signal processing, machine learning, software engineering, etc.), it is becoming
more challenging to make decisions on the best arrangement to accomplish the work. For
example, Figure 2 shows the many variations of workflows that can be defined based on
the use cases and the options for data storage and computing infrastructure.

Figure 2. Fisheries Acoustics Workflow Variations: Various use cases (fisheries, data management,
machine learning, education) drive different needs for data storage and computing infrastructure. Options
are abundant but adopting new technology and adapting workflows across use cases is not trivial.

July 10, 2024 350

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

2.1. User Stories

To demonstrate the software requirements of the fisheries acoustics community, below we
describe several example user stories.

A fisheries scientist needs to process all data after a 2%month ship survey to obtain fish
biomass estimates. They have previously used a commercial software package and are
open to exploring open%source tools to achieve the same goal. They are familiar with basic
scripting in Python.

A machine learning engineer is developing an ML algorithm to automatically detect fish
on a USV. They need to prepare a large dataset for training but do not know all the necessary
preprocessing steps. They are very familiar with ML libraries but do not have the domain%
specific knowledge for acoustic data processing. They are also not familiar with distributed
computing libraries.

A data manager wants to process several terabytes of mooring data and serve them to the
scientific community. They have a few Python scripts to do this for a small set of files at a
time, but want to scale the processing for many deployments using a cloud infrastructure.

An acoustics graduate student obtained echosounder data analysis scripts from a retired
scientist but does not have all the parameters needed to reproduce the results in order to
proceed with their dissertation research.

We draw attention to the different levels of experience of these users: each user has exper%
tise in a subdomain, however, to accomplish their specific goal(s), they need to learn new
tools or obtain knowledge from others. We outline several requirements that stem from
these stories:

• The system should run both on a local computer and within a cloud environment.
• The system should allow processing to be scaled to large datasets, but should not be

overly complicated. For example, users with Python scripting experience can run it
locally with pre%defined stages and parameters.

• The system should provide visibility into the operations that are applied to the data,
and the procedures should be interpretable to users without acoustics expertise.

• The system should preferably be free and open source so that it is accessible to
members of different institutions.

• The system should adapt to rapid changes of cloud and distributed computing
libraries, and preferably should leverage existing developments within the technical
communities.

2.2. Software Landscape

Traditionally echosounder data processing pipelines are executed within a GUI%based
software (e.g. Echoview [9], LSSS [10], ESP3 [11], Matecho [12]). These software packages
have been invaluable for onboard real%time visualization, as well as post%survey data
screening and annotation. Some of them also support integration with scripting tools which
facilitates the reproducible execution of the pipelines. For example, the Echoview software
provides the option to automate pipelines through an Automation Module and to visualize
the processing stages in a Dataflow Toolbox. Further, one can script operations through
the echoviewR package [13]. However, since Echoview is neither free nor open source, these
pipelines cannot be shared with researchers who do not have a license. In general, the GUI
tools are usually designed to be used on a desktop computer and require downloading the
data first, which is becoming challenging with the growing volume of the datasets. There
has been also growth in development of new methods to detect the species of interest
from the echosounder data, with the goal of substituting for the manual annotation proce%

July 10, 2024 351

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

dures and making analysis of large datasets more efficient and objective. However, the
new methods are typically developed independently from the existing software packages.
Over the last several years there has been substantial development of open source Python
packages (PyEchoLab [14], echopype [15], echopy [16]), each providing common echosounder
processing functionalities, but differing in the data structure organization and processing.
Since echosounder instruments store the data in binary, instrument%specific formats, the
first stage requires parsing the raw data into a more common format. PyEcholab converts
the data into numpy [17] arrays. echopy expects data are already parsed into numpy arrays
and all methods operate on them. Echopype converts raw data files into a standardized
Python EchoData object, which can be stored in a zarr [18] format and supports distributed
computing by utilizing dask [19] and xarray [20]. The use of open source packages and
well%established formats allow further integration with other open source libraries such as
those for machine learning (e.g. classification, clustering) or visualization. In addition, if
custom modification is required for a specific application scenario, researchers can adapt
the code and contribute the modification back to the packages, which is likely to benefit
other researchers.

2.2.1. Challenges:

Despite the availability of methods and tools to process echosounder data, it is not trivial to
orchestrate all function calls in an end%to%end pipeline. While a well%documented Jupyter
[21] notebook can show the sequence of processing stages, a considerable amount of path
and parameter configuration is required to execute these stages on a large dataset, store
the intermediate data products, and log the process comprehensively. Although automation
can be achieved through a combination of Python and bash scripts that provision the
environment, execute the stages, and manage inputs/outputs, the configuration process can
be tedious, prone to error, and specific to the use case and the computing platform. Adapting
an existing procedure to a new setting is usually not straightforward, and sometimes
even reproducing previous results can pose a challenge. Below we discuss in more detail
the different choices of data storage and computational infrastructure and the associated
challenges of building workflows across them.

Data Storage:

Researchers are faced with decisions of where to store the data from experiments, interme%
diate products, and final results. Initially, data are usually stored on local hard drive storage
associated with the instrument (which on some platforms may have limited capacity), but
eventually, these data may be transferred to a data archive if one is maintained within
the community. Some agencies (e.g. NOAA National Centers for Environmental Information
(NCEI) [22]) have adopted cloud storage, and have publicly shared their data, which
greatly facilitates data access and reuse. However, those repositories are usually not where
researchers can store processed products. Funding models and organizational structure
can result in short%term availability of resources and the need to change providers. Certain
applications may need to access the data before they are archived and unreliable internet
connection may require storing the data on%premise or at temporary locations. To be agile
to those frequent changes and allow to easily switch between different platforms, workflows
will benefit from a level of abstraction from storage systems.

Computing Infrastructure:

With the growth of the echosounder datasets, researchers face challenges processing the
data on their personal machines: both in terms of memory usage and computational
time. A typical first attempt for resolution would be to amend the workflow to process
smaller chunks of the data and parallelize operations across multiple cores if available.

July 10, 2024 352

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

However, today researchers are also presented with a multitude of options for distributed
computing: high%performance computing clusters at local or national institutions, cloud
provider services: batch computing (e.g. Azure Batch, AWS Batch, Google Cloud Batch),
container services (e.g. Amazon Elastic Container Services, Azure Container Apps, Google
Kubernetes Engine), serverless functions (e.g. AWS Lamdba Functions, Google Cloud Func%
tions, Microsoft Azure Functions). The choice may be driven by the storage system: its usage
fees and retrieval speeds. Data, code and workflow organization usually has to be adapted
based on the computing infrastructure. The knowledge required to configure these systems
to achieve efficient processing is quite in%depth, and distributed libraries can be hard
to debug and can have unexpected performance bottlenecks. Abstracting the computing
infrastructure and the execution of the tasks can allow researchers to focus on the scientific
analysis of these large and rich datasets.

3. Echodataflow Overview
At the center of echodataflow’s design [2] is the notion that a workflow can be configured
through a set of recipes (.yaml files) that specify the pipeline, data storage, and logging
structure. The idea draws inspiration from the Pangeo%Forge Project which facilitates the
Extraction, Transformation, Loading (ETL) of earth science geospatial datasets from tradi%
tional repositories to analysis%ready, cloud%optimized (ARCO) data stores [23]. The pangeo%
forge recipes (which themselves are inspired by the conda%forge recipes [24]) provide a
model of how the data should be accessed and transformed, and the project has garnered
numerous recipes from the community.

While Pangeo%Forge’s focus is on transformation from netcdf [25] and hdf5 [26] formats
to zarr, echodataflow’s aim is to support full echosounder data processing and analysis
pipelines: from instrument%generated raw data files to data products which contain
acoustically%derived biological estimates, such as abundance and biomass. echodataflow
leverages Prefect [1] to abstract data and computation management. In Figure 3 we
provide an overview of echodataflow’s framework. At the center we see several steps of an
echosounder data processing pipeline: open_raw, combine_echodata, compute_Sv, compute_MVBS,
frequency_differencing, which produce echo classificaton results using a simple threshold%
based criterion. All these functions exist in the echopype package, and are wrapped by
echodataflow into pre%defined stages. Prefect executes the stages on a Dask cluster which
can be started locally or can be externally set up. These echopype functions already support
distributed operations with Dask, and thus the integration with Prefect within echodataflow
is natural. Dask clusters can be set up on a variety of platforms: local computers, cloud
virtual machines, kubernetes [27] clusters, or HPC clusters (via dask-jobqueue [28]), etc.
and allow abstraction from the computing infrastructure. The input datasets, intermediate
data products, and final data products can live in different storage systems (local/cloud)
and Prefect’s block feature provides seamless, provider%agnostic, and secure integration
with them. Workflows can be executed and monitored through Prefect’s dashboard, while
logging of each function is handled by echodataflow.

3.1. Why Prefect?

We chose Prefect among other Python workflow orchestration frameworks such as Apache
Airflow [29], Dagster [30], Argo [31], Luigi [32]. While most of these tools provide flexibily
and level of abstraction suitable for executing fisheries acoustics pipelines, we selected
Prefect for the following reasons:

• Prefect accepts dynamic workflows which are specified at runtime and do not require
to follow a Directed Acyclic Graph, which can be restricting and difficult to implement.

July 10, 2024 353

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

Figure 3. Echodataflow Framework: The above diagram provides an overview of the echodataflow
framework: the objective is to fetch raw files from a local filesystem/cloud archive, process them through
several stages of an echosounder data workflow using a cluster infrastructure, and store both interme-
diate and final data products. In echodataflow the workflow is executed based on text configurations, and
logs are generated for the individual processing stages. Prefect handles the execution of the tasks on the
cluster and provides tools for monitoring the workflow runs.

• In Prefect, Python functions are first class citizens, thus building a Prefect workflow
does not deviate substantially from traditional science workflows composed of func%
tions.

• Prefect integrates with a dask cluster, and echopype processing functions are already
using dask to scale operations.

• Prefect’s code runs similarly locally as well as on cloud services.
• Prefect’s monitoring dashboard is open source, can be run locally, and is intuitive to

use.

We next describe in more detail the components of the workflow lifecycle.

4. Workflow Configuration
The main goal of echodataflow is to allow users to configure an echosounder data process%
ing pipeline through editing configuration “recipe” templates. echodataflow can be config%
ured through three templates: datastore.yaml which handles the data storage locations,
pipeline.yml which specifies the processing stages, and logging.yaml which sets the logging
format.

4.1. Data Storage Configuration

Below we show an example file datastore.yaml with a data storage configuration for a ship
survey. In this scenario the goal is to process data from the Joint U.S.%Canada Integrated
Ecosystem and Pacific Hake Acoustic Trawl Survey [6] which are publicly available on an
AWS S3 bucket hosted by NOAA National Centers for Environmental Information Acoustics
(NCEA) Archive [22]. The archive contains data from many surveys dating back to 1991 (∼
280TB). The configuration allows to pass parameters specifying the ship, survey, and sonar
model names and select the subset of files belonging only to the survey of interest. The
output destination is set to a private S3 bucket belonging to the user (within an AWS account
different from the input one), and the credentials are passed through a block_name. The
survey contains ∼4000 files, and one can set the group option to combine the files into sur%
vey%specific groups: based on the transect information provided in the transect_group.txt
file. One can further use regular expressions to subselect other subgroups based on needs.

July 10, 2024 354

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

datastore.yaml

name: Bell_M._Shimada-SH1707-EK60
sonar_model: EK60
raw_regex: (.*)-?D(?P<date>\w{1,8})-T(?P<time>\w{1,6})
args:
 urlpath: s3://ncei-wcsd-archive/data/raw/{{ ship_name }}/{{ survey_name }}/{{ sonar_model }}/*.raw
 parameters:
 ship_name: Bell_M._Shimada
 survey_name: SH1707
 sonar_model: EK60
 storage_options:
 anon: true
 group:
 file: ./transect_group.txt
 storage_options:
 block_name: echodataflow-aws-credentials
 type: AWS
 group_name: default_group
 json_export: true
 raw_json_path: s3://echodataflow-workground/combined_files/raw_json
output:
 urlpath: <YOUR-S3-BUCKET>
 overwrite: true
 retention: false
 storage_options:
 block_name: echodataflow-aws-credentials
 type: AWS

4.2. Pipeline Configuration

The pipeline configuration file’s purpose is to list the stages of the processing pipeline and
the computational set%up for their execution. Below we show an example pipeline.yaml
file which cofigures a pipeline with several stages: open_raw, combine_echodata, compute_Sv,
compute_MVBS. Each stage is executed as a separate Prefect subflow (a component of a
Prefect workflow), and one can specify additional options on whether to store the raw files.
echodataflow requires access to a Dask cluster: it can be either created on the fly by setting
the use_local_dask to true, or an IP address of an already running cluster can be provided.
Individual stages may require different cluster configurations to efficiently execute the
tasks. Those can be specified with the additional prefect_config option through which the
user can set a specific Dask task runner or the number of retries. Managing retries is
essential for handling transient failures, such as connectivity issues, ensuring the stages
can be re%executed without any manual interference if a failure occurs.

July 10, 2024 355

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

pipeline.yaml

active_recipe: standard
use_local_dask: true
n_workers: 4
scheduler_address: tcp://127.0.0.1:61918
pipeline:
 - recipe_name: standard
 stages:
 - name: echodataflow_open_raw
 module: echodataflow.stages.subflows.open_raw
 options:
 save_raw_file: true
 use_raw_offline: true
 use_offline: true
 prefect_config:
 retries: 3
 - name: echodataflow_combine_echodata
 module: echodataflow.stages.subflows.combine_echodata
 options:
 use_offline: true
 - name: echodataflow_compute_Sv
 module: echodataflow.stages.subflows.compute_Sv
 options:
 use_offline: true
 - name: echodataflow_compute_MVBS
 module: echodataflow.stages.subflows.compute_MVBS
 options:
 use_offline: true
 external_params:
 range_meter_bin: 20
 ping_time_bin: 20S

4.3. Logging Configuration

By default, the outcomes of each stage are logged. The logs can be stored in .json or plain
text files, and the format of the entries can be specified in the configuration file as displayed
below. The json format allows searching through the logs for a specific key.

logging.yaml

version: 1
disable_existing_loggers: False
formatters:
 json:
 format: '[%(asctime)s] %(process)d %(levelname)s %(mod_name)s:%(func_name)s:%(lineno)s -
%(message)s'
 plaintext:
 format: '[%(asctime)s] %(process)d %(levelname)s %(mod_name)s:%(func_name)s:%(lineno)s -
%(message)s'
handlers:
 logfile:
 class: logging.handlers.RotatingFileHandler
 formatter: plaintext
 level: DEBUG
 filename: echodataflow.log
 maxBytes: 1000000
 backupCount: 3

loggers:
 echodataflow:
 level: DEBUG
 propagate: False
 handlers: [logfile]

In this case the logs are stored in the plain text file echodataflow.log. Below we show an
example of output logs.

July 10, 2024 356

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

[2024-06-06 17:32:08,945] 51493 ERROR apply_mask.py:EK60_SH1707_Shimada2_applymask.zarr:147 - Computing
apply_mask
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - Encountered Some Error in
EK60_SH1707_Shimada0
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - 'source_ds' must have coordinates
'ping_time' and 'range_sample'!
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - Encountered Some Error in
EK60_SH1707_Shimada1
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - 'source_ds' must have coordinates
'ping_time' and 'range_sample'!
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - Encountered Some Error in
EK60_SH1707_Shimada2
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - 'source_ds' must have coordinates
'ping_time' and 'range_sample'!

In Section 7, we provide more information on logging options.

5. Workflow Execution
To convert a scientific pipeline into an executable Prefect workflow, one needs to organize
its components into flows, sublfows, and tasks (the key objects of Prefect’s execution logic).
Usually, the stages of a pipeline are organized into flows and subflows, while the individual
pieces of work within the stage are organized into tasks. In practice, flows, subflows, and
tasks are all Python functions, and they differ in how we want to execute them (e.g. concur%
rently/sequentially, w/o retries), and what we want to track during execution (e.g. input/
outputs, state logging, etc.). In echodataflow we organize the typical echosounder processing
stages into subflows (flows within the main workflow), while the operations on different
files (or groups of them) are individual tasks. We describe how functions are organized in
the open_raw stage, which reads the files from raw format, parses the data, and writes them
into a zarr format. The echodataflow_open_raw function is decorated as a flow, and is one of
many subflows of the full workflow. This function processes all files.

@flow
@echodataflow(processing_stage="Open-Raw", type="FLOW")
def echodataflow_open_raw(
 groups: Dict[str, Group], config: Dataset, stage: Stage, prev_stage: Optional[Stage]
):
 """
 Process raw sonar data files and convert them to zarr format.

 Args:
 config (Dataset): Configuration for the dataset being processed.
 stage (Stage): Configuration for the current processing stage.
 prev_stage (Stage): Configuration for the previous processing stage.

 Returns:
 List[Output]: List of processed outputs organized based on transects.

echodataflow_open_raw contains a loop which iterates through all file groups and applies the
process_raw function which operates on a single group and is decorated as a task. All tasks
will be executed on the Dask cluster.

July 10, 2024 357

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

for name, gr in groups.items():
 for raw in gr.data:
 new_processed_raw = process_raw.with_options(
 task_run_name=raw.file_path, name=raw.file_path, retries=3
)
 future = new_processed_raw.submit(raw, gr, working_dir, config, stage)
 futures[name].append(future)

@task()
@echodataflow()
def process_raw(
 raw: EchodataflowObject, group: Group, working_dir: str, config: Dataset, stage: Stage
):
 """
 Process a single group of raw sonar data files.

6. Workflow Monitoring
One of the main advantages of using orchestration frameworks is that they usually provide
tools to monitor the workflow execution. The integration with Prefect allows leveraging
Prefect’s dashboard (Prefect UI) for monitoring the execution of the flows. The dashboard
can be run locally and within Prefect’s online managed system (Prefect Cloud). The local
version provides an entirely open source framework for running and monitoring work%
flows. Figure 4 shows the view of completed runs within the dashboard. The progress can
be monitored while the flows are in progress.

Further, one can also view the progress of the execution of the tasks on the Dask cluster.

7. Workflow Logging
Processing large data archives requires a robust logging system to identify at which step
and for which files the processing has failed. Locating the issues allows to set a path for%
ward to resolve them: either through improving the robustness of the individual libraries
performing the processing steps, or through identifying the artifacts of the data which are
incompatible with the existing pipeline. To address this, we provide several approaches:

Figure 4. Flow Runs: Log of completed runs in Prefect UI. The stages (subflows) are executed sequen-
tially. One can expand the view of an individual flow and see the tasks computed (asynchronously) within
it.

July 10, 2024 358

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

Figure 5. Dask Dashboard: The execution of the tasks on the Dask cluster can also be monitored
through the Dask dashboard.

• Basic Logging with Dask Worker Streams: this approach configures Dask worker
streams to handle echodataflow logs, which is straightforward if exact log order is not
crucial.

• Centralized Logging with Amazon CloudWatch [33]: this approach centralizes all logs
for easy access and analysis. It can be useful when users are already utilizing AWS.

• Advanced Logging with Apache Kafka [34] and Elastic Stack [35] (Elasticsearch,
Kibana, Beats, Logstash): this approach leverages Kafka for log aggregation and Elastic
Stack for log analysis and visualization, offering a robust solution for those who can
maintain the infrastructure, for example data center managers.

By default if logging is not configured, all the worker messages are directed to the appli%
cation console. The order of logs may not be preserved since logs are written once control
returns from the Dask workers to the main application.

8. Workflow Deployment

8.1. Notebook

echodataflow can be directly initiated within a Jupyter notebook, which makes development
interactive and provides a work environment familiar to researchers. One can see how the
workflow is initiated within the Jupyter cell in Figure 6.

We provide two demo notebooks: one for execution on a local machine and another one for
execution on AWS.

8.2. Docker

We facilitate the deployment of echodataflow on various platforms by building a Docker
image from which one can launch a container with all required components and the user
can access the workflow dashboard on the corresponding port.

July 10, 2024 359

https://github.com/OSOceanAcoustics/echodataflow/blob/1ac65fa0bfcdd01b151b98134b842364311059fd/docs/source/local/notebook.ipynb
https://github.com/OSOceanAcoustics/echodataflow/blob/1ac65fa0bfcdd01b151b98134b842364311059fd/docs/source/local/notebook.ipynb

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

Figure 6. Initiating echodataflow in a Jupyter Notebook: Once one has a set of “recipe” configuration
files, they can initiate the workflow in a notebook cell with the echodataflow_start command.

docker pull blackdranzer/echodataflow

prefect server start

docker run --network="host" -e PREFECT_API_URL=http://host.docker.internal:4200/api blackdranzer/
echodataflow

Upon execution, the user can readily access the Prefect UI dashboard and run workflows
from there.

We also provide a Docker image for initiating logging with Kafka and Elastic Stack, thus
streamlining the configuration of several tools.

9. Command Line Interface
We provide a command line interface which supports credential handling, and several
additional features for managing workflows: stage addition and rule validation.

9.1. Adding Stages

Currently, most major functionalities in the echopype package are wrapped into stages:
open_raw, add_depth, add_location, compute_Sv, compute_TS, compute_MVBS, combine_echodata,
frequency_differencing, apply_mask.

We provide tools to generate boilerplate template configuration based on the existing
stages. Here is an example to add a stage:

echodataflow gs <stage_name>

For instance, to generate a boilerplate configuration for the compute_Sv stage, one would use:

July 10, 2024 360

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

echodataflow gs compute_Sv

This command creates a template configuration file for the specified stage, allowing to
customize and integrate it into a workflow. The generated file includes:

• a flow: it orchestrates the execution of all files that need to be processed, either
concurrently or in parallel, based on the configuration.

• a task (helper function): it assists the flow by processing individual files.

9.2. Rule Validation

Scientific workflows often have stages that cannot be executed until other stages have
completed. Those conditions can be set through echodataflow client during the initialization
process and are stored in a echodataflow_rules.txt file:

echodataflow_open_raw:echodataflow_compute_Sv
echodataflow_open_raw:echodataflow_combine_echodata
echodataflow_open_raw:echodataflow_compute_TS
echodataflow_combine_echodata:echodataflow_compute_Sv
echodataflow_compute_Sv:echodataflow_compute_MVBS

These rules dictate the sequence in which stages should be executed, ensuring that each
stage waits for its dependencies to complete. They can be set through the echodataflow rules
-add ... command.

9.2.1. Aspect-Oriented Programming (AOP) for Rule Validation:

In echodataflow, we adopt an aspect%oriented programming [36] approach for rule valida%
tion. This is achieved using a decorator that can be applied to functions to enforce rules
and log function execution details. The echodataflow decorator logs the entry and exit of a
decorated function and modifies the function’s arguments based on the execution context.
This supports two types of execution: “TASK” and “FLOW”.

Example Usage:

@echodataflow(processing_stage="StageA", type="FLOW")
def my_function(arg1, arg2):
 # Function code here
 pass

In the example, the echodataflow decorator ensures that the function my_function is exe%
cuted within the context of “StageA” as a “FLOW”, checking for dependencies and logging
relevant information.

10. Example Use Case: Processing Ship Survey Data from an
Archive
We demonstrate a workflow processing all acoustic data for the 2017 Joint U.S.%Canada Inte%
grated Ecosystem and Pacific Hake Acoustic Trawl Survey through a few routine processing
stages. The survey spans a period of 06/15/2017 % 09/13/2017, covering the entire west coast
of the US and Canada. Figure 1(a) shows a map of a typical transect schedule of the survey.
Raw acoustic data are collected continuously while the ship is in motion, resulting in a
total of 3873 files collected with a total size of 93 GB. The raw files are archived by the
NOAA NCEI Water Column Sonar Data Archive and are publicly accessible on their Amazon

July 10, 2024 361

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

Web Services S3 bucket (https://registry.opendata.aws/ncei%wcsd%archive/). The processing
pipeline involves several steps:

• Convert raw files to cloud%native zarr format following closely a community conven%
tion [15], [37]

• Combine multiple individual zarr files within a continuous transect segment into a
single zarr file

• Compute Sv: calibrate the measured acoustic backscatter data to volume backscatter%
ing strength (Sv, unit: dB re 1 m⁻¹)

Once data are converted to Sv, they are easy to manipulate, as the data are stored in an
xarray data array and are smaller than that of the original data. The final dataset can be
served as an analysis%ready data product to the community. It can be beneficial to store also
intermediate datasets at different processing stages: for example, preserving the converted
raw files in the standardized zarr format allows users to regenerate any of the following
stages with different groupings or resolution, without having to fetch and convert raw data
again.

The execution of the workflow with echodataflow allowed us to monitor the progress of all
files Figure 7: 3872 files were successfully processed, and 1 failed. Most importantly, the
failure did not block the execution of the other files, and a log was generated for the stage
and the filename for which the error occurred. This experiment serves as a confirmation
that the transition from local development to a full production pipeline with echodataflow
can indeed be smooth.

Figure 7. Processing full 2017 Survey Data: 1/3873 files failed at the open_raw stage, but this did not
impact the entire pipeline. As shown, other files were processed successfully through all stages.

July 10, 2024 362

https://registry.opendata.aws/ncei-wcsd-archive/

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

11. Future Development
Our immediate goal is to provide more example workflow recipes integrating other stages
of echosounder data processing, such as machine learning prediction, training dataset
generation, biomass estimation, interactive visualization, etc. We will demonstrate utilizing
functionalities from a suite of open source Python packages (echoregions [38] for reading
region annotations and creating corresponding masks, echopop [39] for combining acoustic
data with biological “ground truth” into biomass estimation, echoshader [40] for echogram
and map dashboard visualization) in building workflows for the Pacific Hake Survey: both
in a historical and near%realtime on%ship data processing context. We aim to streamline the
stage addition process. We will further investigate how to improve memory management
and caching between and within stages to optimize for different scenarios. There is growing
interest in the fisheries acoustics community to share global, accessible, and interoperable
datasets [41], and to agree on community data standards and definitions of processing levels
[37], [42]. As those mature we will align them with existing stages in echodataflow, which
will support building interoperable datasets whose integration will push us to study bigger
and more challenging questions in fisheries acoustics.

12. Beyond Fisheries Acoustics
Echodataflow was designed to facilitate fisheries acoustics workflows, but the structure can
be adapted to data processing pipelines in other scientific communities. The key aspects are
to identify the potential stages of the workflows and associated Python packages/functions
that implement them, and to design the structure of the configuration files. The other as%
pects such as logging, deployment, monitoring, new%stage integration are domain%agnostic.
Processing pipelines that require manipulation of large labeled arrays can directly benefit
from the Dask cluster integration and are prevalent in the research community. Our use
case of regrouping data based on time segments is a common need within scientific settings
in which the file unit level of the instrument is not aligned with the unit level of analysis,
and requires further reorganization and potential resampling and regridding along certain
coordinates. We hope it can serve as a guide on how to build configurable, reproducible,
and scalable workflows in new scientific areas.

Acknowledgements

We thank the Fisheries Engineering and Acoustic Technologies team at the NOAA Northwest
Fisheries Science Center: Julia Clemons, Alicia Billings, Rebecca Thomas, Elizabeth Phillips
for introducing us to the Pacific Hake Survey operations and the hake biomass estimation
workflow.

This work used cpu compute and storage resources at Jetstream2 through allocation
AGR230002 from the Advanced cyberinfrastructure Coordination Ecosystem: Services &
Support (ACCESS) program [43], [44], which is supported by National Science Foundation
grants #2138259, #2138286, #2138307, #2137603, and #2138296.

Funding

NOAA Award No. NA21OAR0110201, NOAA Award No. NA20OAR4320271 AM43, eScience
Institute

References

[1] “Prefect.” [Online]. Available: https://www.prefect.io/

[2] “Echodataflow.” [Online]. Available: https://github.com/OSOceanAcoustics/echodataflow

July 10, 2024 363

https://www.prefect.io/
https://github.com/OSOceanAcoustics/echodataflow

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

[3] NOAA National Center for Environmental Information, “Understanding Our Ocean with Water%Column Sonar
Data.” [Online]. Available: https://storymaps.arcgis.com/stories/e245977def474bdba60952f30576908f

[4] “Saildrone.” [Online]. Available: https://www.saildrone.com/

[5] “DriX.” [Online]. Available: https://www.ixblue.com/north%america/maritime/maritime%autonomy/uncrewed%
surface%vehicles/

[6] Northwest Fisheries Science Center, Fishery Resource Analysis and Monitoring Division, “The 2021 Joint U.S.%
Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey: Cruise Report SH%21%06,” 2022, doi:
10.25923/0979%6D84.

[7] Saildrone, “US/Canada West Coast Fisheries,” 2019. [Online]. Available: https://www.saildrone.com/technology/
data%sets/west%coast%fisheries%2019

[8] J. Trowbridge et al., “The Ocean Observatories Initiative,” Frontiers in Marine Science, vol. 6, 2019, doi: 10.3389/
fmars.2019.00074.

[9] Echoview Software Pty Ltd, “Echoview % Sound Knowledge.” [Online]. Available: https://www.echoview.com/

[10] R. Korneliussen et al., “The Large Scale Survey System % LSSS,” in Proceedings of the 29th Scandinavian Symposium
on Physical Acoustics, Ustaoset, Norway, 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:
204802910

[11] Y. Ladroit, P. C. Escobar%Flores, A. C. G. Schimel, and R. L. O’Driscoll, “ESP3: An open%source software for the quan%
titative processing of hydro%acoustic data,” SoftwareX, vol. 12, p. 100581, 2020, doi: 10.1016/j.softx.2020.100581.

[12] Y. Perrot et al., “Matecho: An Open%Source Tool for Processing Fisheries Acoustics Data,” Acoustics Australia, vol.
46, no. 2, pp. 241–248, 2018, doi: 10.1007/s40857%018%0135%x.

[13] L.%M. K. Harrison, M. J. Cox, G. Skaret, and R. Harcourt, “The R package EchoviewR for automated processing of
active acoustic data using Echoview,” Frontiers in Marine Science, vol. 2, 2015, doi: 10.3389/fmars.2015.00015.

[14] C. C. Wall, R. Towler, C. Anderson, R. Cutter, and J. M. Jech, “PyEcholab: An open%source, python%based toolkit
to analyze water%column echosounder data,” The Journal of the Acoustical Society of America, vol. 144, no. 3, p.
1778, 2018, doi: 10.1121/1.5067860.

[15] W.%J. Lee, E. Mayorga, L. Setiawan, I. Majeed, K. Nguyen, and V. Staneva, “Echopype: A Python library for
interoperable and scalable processing of water column sonar data for biological information,” arXiv:2111.00187
[eess], 2021, doi: 10.48550/arXiv.2111.00187.

[16] “open%ocean%sounding/echopy.” [Online]. Available: https://github.com/open%ocean%sounding/echopy

[17] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020, doi: https://
doi.org/10.1038/s41586%020%2649%2.

[18] A. Miles et al., “zarr%developers/zarr%python: v2.18.2.” [Online]. Available: https://doi.org/10.5281/zenodo.
11320255

[19] Dask Development Team, “Dask: Library for dynamic task scheduling,” 2016. [Online]. Available: http://dask.
pydata.org/

[20] S. Hoyer and J. Hamman, “xarray: N%D labeled arrays and datasets in Python,” Journal of Open Research Software,
vol. 5, no. 1, 2017, doi: 10.5334/jors.148.

[21] T. Kluyver et al., “Jupyter Notebooks – a publishing format for reproducible computational workflows,” in
Positioning and Power in Academic Publishing: Players, Agents and Agendas, F. Loizides and B. Schmidt, Eds.,
2016, pp. 87–90.

[22] C. Wall, “Building an Accessible Archive for Water Column Sonar Data.” [Online]. Available: http://dx.doi.org/10.
1029/2016EO057595

[23] C. Stern et al., “Pangeo Forge: Crowdsourcing Analysis%Ready, Cloud Optimized Data Production,” Frontiers in
Climate, vol. 3, 2022, doi: 10.3389/fclim.2021.782909.

[24] conda%forge community, “The conda%forge Project: Community%based Software Distribution Built on the conda
Package Format and Ecosystem.” [Online]. Available: https://doi.org/10.5281/zenodo.4774216

[25] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,” IEEE Computer Graphics and Applications,
vol. 10, no. 4, pp. 76–82, 1990, doi: 10.1109/38.56302.

[26] The HDF Group, “Hierarchical Data Format, version 5.” [Online]. Available: https://github.com/HDFGroup/hdf5

[27] “Kubernetes.” [Online]. Available: https://kubernetes.io/

[28] “Dask JobQueue.” [Online]. Available: https://jobqueue.dask.org/en/latest/

[29] “Apache Airflow.” [Online]. Available: https://airflow.apache.org/

[30] “Dagster.” [Online]. Available: https://dagster.io/

[31] “Argo Workflows,” 2024. [Online]. Available: https://github.com/argoproj/argo%workflows

[32] “Luigi.” [Online]. Available: https://luigi.readthedocs.io/en/stable/running_luigi.html

[33] “Amazon Cloudwatch.” [Online]. Available: https://aws.amazon.com/pm/cloudwatch/

July 10, 2024 364

https://storymaps.arcgis.com/stories/e245977def474bdba60952f30576908f
https://www.saildrone.com/
https://www.ixblue.com/north-america/maritime/maritime-autonomy/uncrewed-surface-vehicles/
https://www.ixblue.com/north-america/maritime/maritime-autonomy/uncrewed-surface-vehicles/
https://doi.org/10.25923/0979-6D84
https://www.saildrone.com/technology/data-sets/west-coast-fisheries-2019
https://www.saildrone.com/technology/data-sets/west-coast-fisheries-2019
https://doi.org/10.3389/fmars.2019.00074
https://doi.org/10.3389/fmars.2019.00074
https://www.echoview.com/
https://api.semanticscholar.org/CorpusID:204802910
https://api.semanticscholar.org/CorpusID:204802910
https://doi.org/10.1016/j.softx.2020.100581
https://doi.org/10.1007/s40857-018-0135-x
https://doi.org/10.3389/fmars.2015.00015
https://doi.org/10.1121/1.5067860
https://doi.org/10.48550/arXiv.2111.00187
https://github.com/open-ocean-sounding/echopy
https://doi.org/https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.11320255
https://doi.org/10.5281/zenodo.11320255
http://dask.pydata.org/
http://dask.pydata.org/
https://doi.org/10.5334/jors.148
http://dx.doi.org/10.1029/2016EO057595
http://dx.doi.org/10.1029/2016EO057595
https://doi.org/10.3389/fclim.2021.782909
https://doi.org/10.5281/zenodo.4774216
https://doi.org/10.1109/38.56302
https://github.com/HDFGroup/hdf5
https://kubernetes.io/
https://jobqueue.dask.org/en/latest/
https://airflow.apache.org/
https://dagster.io/
https://github.com/argoproj/argo-workflows
https://luigi.readthedocs.io/en/stable/running_luigi.html
https://aws.amazon.com/pm/cloudwatch/

Echodataflow: Recipe-based Fisheries Acoustics Workflow Orchestration | Staneva et al., 2024

[34] “Apache Kafka.” [Online]. Available: https://kafka.apache.org/

[35] “Elastic Stack.” [Online]. Available: https://www.elastic.co/

[36] G. Kiczales et al., “Aspect%oriented programming,” in ECOOP'97 — Object-Oriented Programming, M. Aķsit and S.
Matsuoka, Eds., Berlin, Heidelberg, 1997, pp. 220–242.

[37] G. Macaulay and H. Peña, “The SONAR%netCDF4 convention for sonar data, Version 1.0,” 2018, doi: 10.17895/
ices.pub.4392.

[38] K. Nguyen, C. Tuguinay, V. Staneva, and W.%J. Lee, “OSOceanAcoustics/echoregions: v0.1.0 (Initial Release of
Echoregions).” [Online]. Available: https://doi.org/10.5281/zenodo.8400850

[39] B. Lucca, E. Mayorga, b reyes, and W.%J. Lee, “OSOceanAcoustics/echopop: v0.4.0.” [Online]. Available: https://doi.
org/10.5281/zenodo.11454149

[40] D. Lei, D. Setiawan, B. Reyes, E. Mayorga, W.%J. Lee, and V. Staneva, “OSOceanAcoustics/echoshader: v0.1.0.” [On%
line]. Available: https://doi.org/10.5281/zenodo.10856784

[41] “ICES Working Group on Global Acoustic Interoperable Network (GAIN).” [Online]. Available: https://github.
com/ices%eg/wk_WKGAIN

[42] “Echosounder Data Processing Levels.” [Online]. Available: https://github.com/OSOceanAcoustics/echolevels

[43] D. Y. Hancock et al., “Jetstream2: Accelerating cloud computing via Jetstream,” in Practice and Experience in
Advanced Research Computing 2021: Evolution Across All Dimensions, in PEARC '21. Boston, MA, USA, 2021. doi:
10.1145/3437359.3465565.

[44] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns, “ACCESS: Advancing Innovation: NSF’s Advanced
Cyberinfrastructure Coordination Ecosystem: Services & Support,” in Practice and Experience in Advanced
Research Computing 2023: Computing for the Common Good, in PEARC '23. Portland, OR, USA, 2023, pp. 173–176.
doi: 10.1145/3569951.3597559.

July 10, 2024 365

https://kafka.apache.org/
https://www.elastic.co/
https://doi.org/10.17895/ices.pub.4392
https://doi.org/10.17895/ices.pub.4392
https://doi.org/10.5281/zenodo.8400850
https://doi.org/10.5281/zenodo.11454149
https://doi.org/10.5281/zenodo.11454149
https://doi.org/10.5281/zenodo.10856784
https://github.com/ices-eg/wk_WKGAIN
https://github.com/ices-eg/wk_WKGAIN
https://github.com/OSOceanAcoustics/echolevels
https://doi.org/10.1145/3437359.3465565
https://doi.org/10.1145/3569951.3597559

	Motivation
	Fisheries Acoustics Workflows
	User Stories
	Software Landscape
	Challenges
	Data Storage
	Computing Infrastructure

	Echodataflow Overview
	Why Prefect?

	Workflow Configuration
	Data Storage Configuration
	Pipeline Configuration
	Logging Configuration

	Workflow Execution
	Workflow Monitoring
	Workflow Logging
	Workflow Deployment
	Notebook
	Docker

	Command Line Interface
	Adding Stages
	Rule Validation
	Aspect-Oriented Programming (AOP) for Rule Validation

	Example Use Case: Processing Ship Survey Data from an Archive
	Future Development
	Beyond Fisheries Acoustics
	Acknowledgements
	References

