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Posters and Slides
Keynote Presentations
Explainable AI for Climate Science: Opening the Black Box to Reveal Planet Earth

Earth’s climate is chaotic and noisy. Finding usable signals amidst all of the noise can be
challenging: be it predicting if it will rain, knowing which direction a hurricane will go,
understanding the implications of melting Arctic ice, or detecting the impacts of humans on the
earth’s surface. Here, I will demonstrate how explainable artificial intelligence (XAI) techniques can
sift through vast amounts of climate data and push the bounds of scientific discovery: allowing
scientists to ask “why?” but now with the power of machine learning.

Elizabeth A. Barnes

https://doi.org/10.25080/yhec5334

Particles, People, and Pull Requests

I will tell the story of how the statistical challenges in the search for the Higgs boson and exotic
new physics at the Large Hadron Collider led to new approaches to collaborative, open science. The
story centers around computational and sociological challenges where software and
cyberinfrastructure play a key role. I will highlight a few important changes in perspective that
were critical for progress including embracing declarative specifications, pivoting from
reproducibility to reuse, and the abstraction that led to the field of simulation-based inference.

Kyle Cranmer

https://doi.org/10.25080/rkcg9834

The Right Tool for the Job

There are many programming languages that we might choose for scientific computing, and we
each bring a complex set of preferences and experiences to such a decision. There are significant
barriers to learning about other programming languages outside our comfort zone, and seeing
another person or community make a different choice can be baffling. In this talk, hear about the
costs that arise from exploring or using multiple programming languages, what we can gain by
being open to different languages, and how curiosity and interest in other programming
languages supports sharing across communities. We’ll explore these three points with practical
examples from software built for flexible storage and model deployment, as well as a brand new
project for scientific computing.

Julia Silge

https://doi.org/10.25080/xwen4438

Accepted Talks
No-Code-Change GPU Acceleration for Your Pandas and NetworkX Workflows

This talk describes new open-source GPU accelerators from the NVIDIA RAPIDS project for Pandas
and NetworkX and will demonstrate how you can enable them for your workflows to experience
significant speedups without code changes.

Rick Ratzel, Vyas Ramasubramani

https://doi.org/10.25080/jyef9727

Python for early-stage design of sustainable aviation fuels
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We develop a multi-objective, multi-parameter optimization methodology applied to designing
novel sustainable aviation fuels

A.M. Martz, A.E. Comesana, V.H. Rapp, K.E. Niemeyer

https://doi.org/10.25080/afjf2467

Introduction to Causal Inference Using pgmpy

In the domain of data science, a significant number of questions are aimed at understanding and
quantifying the effects of interventions, such as assessing the efficacy of a vaccine or the impact of
price adjustments on the sales volume of a product. Traditional association based methods
machine learning methods, predominantly utilized for predictive analytics, prove inadequate for
answering these causal questions from observational data, necessitating the use of causal
inference methodologies. This talk aims to introduce the audience to the Directed Acyclic Graph
(DAG) framework for causal inference. The presentation has two main objectives: firstly, to provide
an insight into the types of questions where causal inference methods can be applied; and
secondly, to demonstrate a walkthrough of causal analysis on a real dataset, highlighting the
various steps of causal analysis and showcasing the use of the pgmpy package.

Ankur Ankan

https://doi.org/10.25080/kvta3223

Coming Online: Enabling Real-Time and AI-Ready Scientific Discovery

A framework for building real-time and AI enabled sensor processing applications

Adam Thompson, Luigi Cruz

https://doi.org/10.25080/juet4542

Expanding the OME ecosystem for imaging data management

OMERO is an open-source solution for image data management which can be customized and
hosted by individual institutions, based on the widely used OME data model for microscopy data.
Multiple OMERO deployments might be used to provide core delivery, facilitate internal research,
or serve as a public data repository. The omero-cli-transfer package facilitates data transfer
between these OMERO instances and provides new methods for importing datasets. Another open-
source package, ezomero, improves the usability of OMERO in a research environment by providing
easier access to OMERO’s Python interface. Along with existing OMERO plugins built for other
analysis and viewing software, this positions OMERO to be a hub for image storage, analysis, and
sharing.

Erick Ratamero

https://doi.org/10.25080/wdya6338

Free, public, standardized Zarr stores of geospatial data in the cloud for all! Now in Beta.

At the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC), we’re
doing the heavy lifting to make large geospatial datasets easily accessible from the cloud. No more
downloading data. No more worrying about quirky metadata or missing dimensions. No more
concatenating hundreds or thousands of files together. Just fire up your Jupyter notebook
somewhere in Amazon Web Services (AWS)‘s US-West-2 region, get some free temporary AWS
credentials, open our Zarr stores, and start doing your science.

https://doi.org/10.25080/afjf2467
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Christine Smit, Hailiang Zhang, Brianna Pagan, Dieu My Nguyen, James Acker, Ashley Heath,
Mahabaleshwara Hegde, Long Pham

https://doi.org/10.25080/majr5893

My NumPy year: From no CPython C API experience to shipping a new DType in NumPy 2.0

Support for string data in NumPy has long been a sore spot for the community. At the beginning of
2023 I was given the task to solve that problem by writing a new UTF-8 variable-length string DType
leveraging the new NumPy DType API. I will offer my personal narrative of how I accomplished that
goal over the course of 2023 and offer my experience as a model for others to take on difficult
projects in the scientific python ecosystem, offering tips for how to get help when needed and
contribute productively to an established open source community.

Nathan Goldbaum

https://doi.org/10.25080/wdug2226

Introduction to Causal Inference with Machine Learning

Causal inference has traditionally been used in fields such as economics, health studies, and social
sciences. In recent years, algorithms combining causal inference and machine learning have been
a hot topic. Libraries like EconML and CausalML, for instance, are good Python tools that facilitate
the easy execution of causal analysis in areas like economics, human behavior, and marketing. In
this talk, I will explain key concepts of causal inference with machine learning, show practical
examples, and offer some practical tips. Attendees will learn how to apply machine learning to
causal analysis effectively, boosting their research and decision-making.

Hajime Takeda

https://doi.org/10.25080/tufy8474

HyperSpy: Your Multidimensional Data Analysis Toolbox

HyperSpy is a community-developed open-source library providing a framework to facilitate
interactive and reproducible analyses of multidimensional datasets. Born out of the electron
microscopy scientific community and building on the extensive scientific Python environment,
HyperSpy provides tools to efficiently explore, manipulate, and visualize complex datasets of
arbitrary dimensionality, including those larger than a system’s memory. After 14 years of
development, HyperSpy recently celebrated its 2.0 version release. This presentation (re)introduces
HyperSpy’s features and community, with a focus on recent efforts paring the library into a
domain-agnostic core and a robust ecosystem of extensions providing specific scientific
functionality.

Joshua Taillon

https://doi.org/10.25080/gpna7794

Ibis and interfaces

This talk lays out the current database / data landscape as it relates to the SciPy stack, and explores
how Ibis (an open-source, pure Python, dataframe interface library) can help decouple interfaces
from engines, to improve both performance and portability.

Gil Forsyth

https://doi.org/10.25080/fdck7886
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Using Satellite Imagery to Identify Harmful Algal Blooms and Protect Public Health

This talk illustrates how machine learning models to detect harmful algal blooms from satellite
imagery can help water quality managers make informed decisions around public health warnings
for lakes and reservoirs. Rooted in the development of the open source package CyFi, this talk
includes insights around identifying when your model is getting the right answer for the wrong
reasons, the upsides of using decision tree models with satellite imagery, and how to help non-
technical users build confidence in machine learning models.

Emily Dorne

https://doi.org/10.25080/ghpx3574

An Introduction to Impact Charts

Impact charts, as implemented in the impactchart package, make it easy to take a data set and
visualize the impact of one variable on another in ways that techniques like scatter plots and linear
regression can’t, especially when there are other variables involved. In this talk, we introduce
impact charts, demonstrate how they find easter-egg impacts we embed in synthetic data, show
how you can create your first impact chart with just a few lines of code, and show how impact
charts can find hidden impacts in a real-world use case.

Darren Vengroff, Ph.D.

https://doi.org/10.25080/tfaj6588

ITK-Wasm: Universal spatial analysis and visualization

How WebAssembly makes scientific computing accessible, sustainable, and reproducible

Matthew McCormick

https://doi.org/10.25080/pghc3745

Making Research Data Flow with Python

Telescopes exist in remote environments, and yet produce huge amounts of data. This
presentation is about building the data transfer tool Librarian for the Simons Observatory, which
enables seamless shifting between internet-enabled transfers and hand-carrying disks down
mountains.

Josh Borrow

https://doi.org/10.25080/ttdf6694

Monte Carlo/Dynamic Code: Performant and Portable High-Performance Computing at Scale
via Python and Numba

Monte Carlo / Dynamic Code (MC/DC) is a Monte Carlo neutron transport solver targeting high
performance computing. MC/DC is acclerated using the Numba compiler and has the capibility to
run on CPUs and GPUs. This talk describes the development of MC/DC

Joanna Piper Morgan, Kyle E. Niemeyer

https://doi.org/10.25080/cdrf9272

Starsim: A flexible framework for agent-based modeling of health and disease
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Starsim is an open-source agent-based modeling framework for simulating the spread of diseases
among agents via dynamic transmission networks. This talk describes the Starsim package and
gives an example of how it can be used to model HIV and syphilis.

Cliff Kerr, Robyn Stuart, Romesh Abeysuriya, Paula Sanz-Leon, Jamie Cohen, Daniel Klein

https://doi.org/10.25080/ukpu4584

anywidget: custom Jupyter Widgets made easy

anywidget simplifies the creation and distribution of Jupyter Widgets by providing a portable and
reusable specification and toolset. It ensures cross-platform compatibility with notebook platforms,
lowers the barrier to entry, and improves reusability and interoperability in interactive computing
environments. This talk highlights the motivation to bring the web and Python ecosystems closer
together, showcasing community-driven anywidgets and new widgets that push the boundaries of
these platforms.

Trevor Manz

https://doi.org/10.25080/wdhm9848

Pooch: A friend to fetch your data files

Easily download and cache data files from the web.

Santiago Soler

https://doi.org/10.25080/frkj7844

scikit-build-core: A modern build-backend for CPython C/C++/Fortran/Cython extensions

A presentation about scikit-build-core exploring how it modernizes Python extension building by
integrating CMake with Python packaging standards, enabling seamless cross-compilation and
multi-platform support. The slides highlight key features such as simplified configuration, support
for multiple languages like C++, Fortran, and Cython, and the transition from the classic scikit-build.
They also provide insights into how scikit-build-core enhances the development experience and
streamlines Python module creation for diverse environments.

Jean-Christophe Fillion-Robin, Henry Schreiner, Matt McCormick

https://doi.org/10.25080/xjvg7399

Sparse Arrays in scipy.sparse

The shift from sparse matrices to sparse arrays in SciPy. What’s coming, migration and API
decisions.

Dan Schult

https://doi.org/10.25080/ejft5676

Building a modular simulation platform for magnetic resonance force microscopy (MRFM)
experiments (mrfmsim and mmodel)

We present mrfmsim, an open-source framework that not only facilitates the design, simulation,
and signal validation of magnetic resonance force microscopy experiments, but also significantly
speeds up the development process. In the talk, we present the challenges in building simulation
packages for experiments undergoing continuous development in a graduate research setting. We
show how we designed mrfmsim and its backend mmodel for modularity, extendibility, and

https://doi.org/10.25080/ukpu4584
https://doi.org/10.25080/wdhm9848
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readability, and how these design principles translate into practical benefits for researchers in the
field.

Peter Sun, John Marohn

https://doi.org/10.25080/xpnp9684

Vector space embeddings and data maps for cyber defense

Cyber defense, and in particular threat detection, requires gaining insight from very large amounts
of telemetry data, using unsupervised learning. This talk presents a method for embedding such
data in vector spaces and exploring it through interactive visualization and labeling, using data
maps. We demonstrate this method by looking at the baseline behaviours of hosts in the open
ACME3 dataset of host-based telemetry.

Benoit Hamelin, John Healy

https://doi.org/10.25080/uykm3443

Simplifying analysis of hierarchical HDF5 and NetCDF4 files with xarray-datatree

Xarray-datatree, is a Python package that supports HDFs (Hierarchical Data Format) with
hierarchical group structures by creating a tree-like hierarchical data structure in xarray.

Eniola Awowale, Tom Nicholas, Lucas Sterzinger, Nick Lenssen

https://doi.org/10.25080/xfex7842

Accepted Posters
Training a Supervised Cilia Segmentation Model from Self-Supervision

Understanding cilia behavior is essential in diagnosing and treating such diseases. But, the tasks of
automatically analysing cilia are often a labor and time-intensive since there is a lack of automated
segmentation. In this work we overcome this bottleneck by developing a robust, self-supervised
framework exploiting the visual similarity of normal and dysfunctional cilia. This framework
generates pseudolabels from optical flow motion vectors, which serve as training data for a semi-
supervised neural network. Our approach eliminates the need for manual annotations, enabling
accurate and efficient segmentation of both motile and immotile cilia.

Seyed Alireza Vaezi, Shannon Quinn

https://doi.org/10.25080/hfew4757

Domovyk: Multilingual Transliteration for Cyrillic Text

The Domovyk package provides transliteration to and from Cyrillic alphabets in a way that
addresses some limitations in existing packages, providing multilingual functionality, support for
composite Unicode characters, and support for languages not addressed in other packages, such
as Church Slavonic and Carpatho-Rusyn. Domovyk aims to increase the accessibility of
transliteration technologies for users working in these languages, focusing on use cases that
require thorough and accurate transliteration.

Ian Goodale

https://doi.org/10.25080/udkt5322

ncompare: A Python Package for Comparing netCDF Structures

https://doi.org/10.25080/xpnp9684
https://doi.org/10.25080/uykm3443
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As netCDF (Network Common Data Form) files are widely used in Earth science — with climate
models, oceanographic or atmospheric reanalyses, and observational data — improved means of
evaluating netCDF files can help enable a wide range of applications. We have developed a
reusable open source approach through ncompare, which is a Python package for comparing netCDF
structures. ncompare facilitates rapid comparisons by generating a formatted display of the
matching and non-matching groups, variables, and associated metadata between two NetCDF
datasets. The user has the option to colorize the terminal output for ease of viewing, and ncompare
can optionally save comparison reports in text, comma-separated value (CSV), and/or Microsoft
Excel formats.

Daniel E. Kaufman, Walter E. Baskin, Julia S. Lowndes

https://doi.org/10.25080/etnj4973

Development and Application of CWGID: the California Wildfire GeoImaging Dataset for Deep
Learning Driven Forest Wildfire Detection

This poster presents the development and application of the CWGID (California Wildfire
GeoImaging Dataset), a comprehensive dataset for deep learning-driven forest wildfire detection.
The study explores the dataset creation process, its application in wildfire detection using deep
learning techniques, and the results obtained.

Valeria Martin, K. Brent Venable, Derek Morgan

https://doi.org/10.25080/kgpe7737

Fast and Easy Graph Analytics with the NetworkX Ecosystem of Backends

Poster describing the function dispatching features of NetworkX and the various backends
currently available.

Rick Ratzel, Dan Schult

https://doi.org/10.25080/ryga7653

RoughPy: Streaming data is rarely smooth

RoughPy is a library that aims to connect data science with the mathematics of rough paths to
provide a new perspective for working with streamed data. The Stream object provided by the
library is an abstraction of streamed data so that it can be viewed through the lens of rough path
theory. This makes the high order representation of the data (the signature) available as a tool to
be used in data science and machine learning applications. This poster outlines the mathematics,
the applications and data, and how RoughPy brings both sides together.

Sam Morley

https://doi.org/10.25080/yfnx8796

Mamba Models:A Potential Replacement for Transformers?

Mamba models leverage State Space Models and the HiPPO framework to efficiently handle long-
range dependencies, reducing computational complexity compared to traditional transformers.

Suvrakamal Das

https://doi.org/10.25080/txwe5647

Employing the strengths of Generative AI supports the execution of time series analysis and
forecasting
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This poster explores the use of Generative AI models for time series analysis and forecasting,
specifically in the context of energy consumption. It compares traditional statistical methods, such
as ARIMA, with advanced AI-based techniques like AutoGluon-TimeSeries, xLSTM, and TimeGPT.
The study aims to demonstrate the efficiency and accuracy of these methods using real-world
energy data from the PJM Interconnection LLC. Results indicate that AI-based models, particularly
xLSTM and AutoGluon-TimeSeries, outperform traditional models in forecasting accuracy,
showcasing their potential for better resource management and decision-making in climate
change mitigation.

Ying-Jung Chen

https://doi.org/10.25080/xtng2642

Parallel Graph Algorithms and Building Backends with Entry Points

Hi! Have you ever wished your pure Python libraries were faster? Or wanted to fundamentally
improve a Python library by rewriting everything in a faster language like C or Rust? Well, wish no
more… NetworkX’s backend dispatching mechanism redirects your plain old NetworkX function
calls to a FASTER implementation present in a separate backend package by leveraging Python’s
entry_point specification! NetworkX is a popular, pure Python library used for graph (aka network)
analysis. But when the graph size increases (like a network of everyone in the world), NetworkX
algorithms could take days to solve a simple graph analysis problem. To address these
performance issues, this backend dispatching mechanism was recently developed. This poster
explores NetworkX’s parallel backend that utilizes Joblib to run graph algorithms on multiple CPU
cores and how we can use it just by specifying a backend keyword argument or by passing the
backend graph object (type-based dispatching). It also goes over some of the future ToDos for the
nx-parallel backend, the speedups obtained, and some important notes to ponder about. Last but
not at all the least, it depicts the ideal pipeline starting from networkx, going on to nx-parallel, then
to joblib, and then towards the various parallel libraries. (nx-parallel GitHub repo - https://github.
com/networkx/nx-parallel) Thank you :)

Aditi Juneja

https://doi.org/10.25080/ypkc2577

Aeromancy: Towards More Reproducible AI and Machine Learning

We present Aeromancy, an opinionated philosophy and open-sourced framework that closely
tracks experimental runtime environments for more reproducible machine learning. In existing
experiment trackers, it’s easy to miss important details about how an experiment was run, e.g.,
which version of a dataset was used as input or the exact versions of library dependencies. Missing
these details can make replicability more difficult. Aeromancy aims to make this process smoother
by providing both new infrastructure (a more comprehensive versioning scheme including both
system runtimes and external datasets) and a corresponding set of best practices to ensure
experiments are maximally trackable.

David McClosky

https://doi.org/10.25080/yyvd5799

Leveraging FAIR principles for efficient management of meteorological radar data

Radars are crucial in meteorology for their precise spatio-temporal resolution, enabling early
detection and tracking of severe weather. This capability aids meteorologists in issuing timely
alerts, thus safeguarding lives and reducing property damage. Radar data also supports offline

https://doi.org/10.25080/xtng2642
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applications like cloud and precipitation analysis, climatology, and insurance risk assessment, all
relying on its time-series nature. However, storing radar data traditionally involves proprietary
formats with high I/O demands, leading to slow computations and resource-intensive
requirements.

To address these challenges, a new data model is proposed using the CF format-based FM301
hierarchical tree structure and ARCO formats. This model efficiently organizes radar data into
cloud-storage buckets using Python libraries like Xarray, Xradar, Wradlib, and Zarr. Demonstrated
with Carimagua, Colombia radar data, the model shows faster processing times than legacy
methods on standard hardware. Emphasizing FAIR principles (Findable, Accessible, Interoperable,
Reusable), this approach enhances accessibility to radar data on cloud platforms, promoting open
science and wider societal benefit.

Alfonso Ladino, Maxwell Grover, Stephen Nesbitt, Kai Mühlbauer

https://doi.org/10.25080/wnaf9823

Building Quantum Bridges: Advancing Drug Discovery with QAOA and Explaining Quantum
Computing with Building Blocks

Using quantum computers to solve combinatorial optimization problems

B. Maurice Benson

https://doi.org/10.25080/mtdn2862

Building sustainability and community in a small project: lessons from working on SaltProc

SaltProc is an open source tool for simulating batch-wise reprocessing of fuel in nuclear reactors
developed around an export controlled depedency. This limited the size of the userbase. I
contributed features to SaltProc to support an open-source alternative, and found that this change
attracted new users.

Oleksandr R. Yardas, Madicken Munk

https://doi.org/10.25080/ercj5799

Open Source Farm to Open Science Table: Project Pythia’s Cook-off Hackathons

This poster describes Project Pythia’s annual community hackathons, aka Cook-offs. These summer
sprints blur the lines between scientist and software developer at an individual and group level,
and seed excitement and commitment to the open source, open science community.

M. Drew Camron, Kevin Tyle

https://doi.org/10.25080/rrdv2565

Accelerating the use of Lagrangian data with Clouddrift

clouddrift is a python library built to accelerate and simplify the use of lagrangian datasets in
science. To achieve this the library adapts datasets into cloud optimized ragged arrays, provides
analysis and query methods to work with lagrangian datasets as ragged arrays.

Santana, Kevin, Elipot, Shane, Miron, Philippe, Curcic, Milan

https://doi.org/10.25080/ftyc2662

Geist: a multimodal data transformation, query, and reporting language
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Geist is a new templating language for declarative data manipulation, query, and report
generation. Building on the Jinja template engine, Geist is designed to support diverse data
backends and query engines via predefined tags and filters, and may be extended with custom
tags. A single Geist template may include multiple queries expressed in different languages, e.g.
SQL and SPARQL, to leverage the strengths of each for clarity and ease of maintenance. Because
Geist both can generate reports in diverse formats and perform inserts and updates on new or
existing databases during template expansion, Geist templates may orchestrate data extraction,
transformation, and load operations spanning multiple tools and data storage systems. Geist also
enables modularity in query languages and eliminates messy procedural programs. Geist aims to
enable developers to use whatever language or tools they like regardless of where the data is
stored.

Meng Li, Timothy McPhillips, Bertram Ludäscher

https://doi.org/10.25080/geaj2635

zfit: scalable pythonic likelihood fitting

zfit is a highly scalable and customizable model manipulation and likelihood fitting library. It uses
the same computational backend as TensorFlow and is optimised for simple and direct
manipulation of probability density functions.

Jonas Eschle, Albert Puig Navarro, Rafael Silva Coutinho, Matthieu Marinangeli, Nicola Serra, Iason
Krommydas

https://doi.org/10.25080/xwwd2556

Convolutional Autoencoders for Denoising Solar Images

Using scientific packages in Python, we trained convolutional autoencoders to improve the quality
of solar images taken from the Atmospheric Imaging Array (AIA).

Jimmy Lynch

https://doi.org/10.25080/fpju4745

Facilitating scientific investigations from long-tail data with Python

This presentation walks through our work on creating a non-nanosecond datetime for Pandas and
the development of Python toolboxes to query databases and analyze datasets using Pandas
objects for interoperability.

Deborah Khider, Varun Ratnakar, Julien Emile-Geay, Kim Pevey, Marco Gorelli, Nicholas McKay, Alexander
James, Jordan Landers

https://doi.org/10.25080/jfcn6576

Climatic and Geographic Influences on Cumacea Genetics in the Northern North Atlantic

Cumacea crustaceans serve as vital indicators of benthic health in marine ecosystems. This study
investigates the influence of environmental parameters on their genetic makeup in the North
Atlantic, focusing on Icelandic waters. We analyze mitochondrial 16S rRNA gene sequences from 62
Cumacea specimens collected across varying depths.

Justin Gagnon, Nadia Tahiri

https://doi.org/10.25080/eage2654

From concept to compute: accelerating research with workflow management in pyiron
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pyiron_workflow is a python framework for developing research workflows based on composing
individual function nodes together into computational graphs. Each node class can be defined by
simply applying a decorator to a regular python function, allowing user-developers to extend
pyiron functionality even without deep knowledge of Object-Oriented Programming. Nodes can be
grouped together into macro nodes using the same simple function-and-decorator approach, such
that complex workflows can be built up and simply represented by composing and nesting these
graphs. In contrast to user workflows being defined via a series of Jupyter notebook cells, this
approach rigorously defines workflows by their graph topology and allows them to be easily shared
– and incorporated into new contexts – by sharing/importing the workflow as a macro node.
Interoperability can be controlled with (optional) type checking on data connections between
nodes.

Liam Huber, Joerg Neugebauer

https://doi.org/10.25080/xwwj3999

3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit
(VTK)

VTK implements an object-oriented approach to 3D visualization, and PyVista adheres to that
underlying structure to provide an API that expands on VTK’s data types. These expanded, wrapped
types hold methods and attributes for quickly accessing scalar arrays, inspecting properties of the
dataset, or using filtering algorithms to transform datasets. PyVista wrapped objects have a suite
of common filters ready for immediate use directly on the objects. These filters are commonly used
algorithms in the VTK library that have been made more accessible by binding a method to control
that algorithm directly onto all PyVista datasets, providing a shared set of functionality. Through
the use of these bound filtering methods, powerful VTK algorithms can be leveraged and
controlled via keyword arguments designed to be intuitive for novice users.

Tetsuo Koyama

https://doi.org/10.25080/vxvf4964

Vectorized Quadrature, Series Summation, Differentiation, Optimization, and Rootfinding in
SciPy

Until recently, SciPy’s best options for scalar quadrature, minimization, and root finding called
compiled code, which could not take advantage of a vectorized Python integrand, objective
function, or residual function; SciPy offered no functions for accurate numerical differentiation or
series summation. These gaps are being filled with a family of pure-Python, array API compatible
functions for dramatically faster vectorized calculation of scalar integrals, infinite sums, derivatives,
minimizers, and roots.

Matt Haberland, Albert Steppi, Pamphile T. Roy

https://doi.org/10.25080/uyyk2727

Spyder and the NumFOCUS SDG program: better UI/UX, improved code completion and
lessons learned

Spyder is a free and open source scientific environment written in Python, for Python, and
designed by and for scientists, engineers and data analysts. Thanks to the NumFOCUS Small
Development Grants (SDG) program, from late 2022 through the beginning of 2024 we’ve made
many improvements to Spyder’s UI/UX and to its support for external code completion plugins.
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We’d like to share the work we’ve done, and explain the ideas and execution behind two of our
proposals, from both a technical and project management perspective.

Daniel Althviz Moré, Juan Sebastian Bautista Rojas

https://doi.org/10.25080/gdhp7664

Scientific Publishing with MyST Markdown

Supercharge your scientific writing with MyST Markdown! MyST is designed for technical
communication and research publication. Sprinkling in all the typesetting power that you’d get
from LaTeX but with the pleasure of lightweight content focussed writing that you get from
Markdown, create interactive papers or documentation that link with data, have embedded
computation and provide explorable notebooks to your readers. Get your work out to a templated
PDF for traditional publication from exactly the same material, all from the command line or with
continuous integration. In this talk, we’ll show how MyST works, how to get started and some
examples of awesome MyST based publications.

Steve Purves, Rowan Cockett

https://doi.org/10.25080/yrmn7235

gravitational lensing simulations made user friendly with Caustics’ three interface levels

We present Caustics, a tool to accelerate the analysis of gravitational lensing systems for the next
generation of astronomical data. Caustics will enable precision measurements of dark matter
properties, the expansion rate of the Universe, lensed black holes, the first stars, and more. In this
talk I will the benefits and challenges of how we used PyTorch (a differentiable and GPU accelerated
scientific python package) to allow for fast development without sacrificing numerical
performance. I will detail our development process as well as how we encourage users of all skill
levels to engage with our documentation/tools.

Connor Stone

https://doi.org/10.25080/gwcm5548

Seamless integration across developer ecosystems with python and wasm in VTK

Visualizing large-scale simulation datasets is vital for research in scientific and engineering fields.
To this end, VTK, an open-source C++ visualization library, and its Python counterparts VTK Python,
PyVista and Vedo are streamlining 3D visualization, though shortcomings remain. We significantly
improved VTK’s automated wrappers and enabled VTK WebAssembly thus simplifying creation of
visualizations in Python or on the web using Trame. This also made it easier to execute VTK native
code directly in a web browser. We discuss challenges and lessons learned in extending large C++
software to diverse languages through API wrapping and cross-compilation to ultimately benefit
the Python community.

Jaswant Panchumarti, Sebastien Jourdain, Berk Geveci, Aashish Chaudhary

https://doi.org/10.25080/fyvp8946

Venturial: Generating CFD Workflows in Python

Venturial is an open-source suite of interactive Python tools for Computational Fluid Dynamics
(CFD). Venturial, envisions to benefit the scientific python community by providing an easy-to-
understand CFD application building workflow within the Python environment.

Rajdeep Adak, Janani Srree Murallidharan, Prabhu Ramachandran
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https://doi.org/10.25080/tpwg2365

SciPy Tools Plenaries
SciPy Tools Plenary on the Journal of Open Source Software (JOSS)

Updates from the Journal of Open Source Software (JOSS) on new work and improvements to the
journal in 2023 and 2024.

Matthew Feickert

https://doi.org/10.25080/pcna4769

SciPy Tools Plenary on Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in
Python. This presentation summarizes changes over the past year, new features, and future plans.

Elliott Sales de Andrade

https://doi.org/10.25080/guwd9846

NumPy annual update

Comprehensive overview of the latest release and major milestones for the NumPy library and its
contributor community

Inessa Pawson

https://doi.org/10.25080/dpha2486

SciPy: not just a conference

Besides a conference, ‘SciPy’ is also a library that provides fundamental building blocks for
modeling and solving scientific problems. SciPy includes algorithms for optimization, interpolation,
statistics, fast Fourier transforms, and many other classes of problems; it also provides specialized
data structures, such as k-dimensional trees and sparse matrices. This presentation summarizes
the current status and future plans of the SciPy library.

Matt Haberland

https://doi.org/10.25080/mtvj6294

Sphinx-gallery and Sphinx-tags

Sphinx-gallery and sphinx-tags features and updates

Hannah Aizenman

https://doi.org/10.25080/ddee5226

Lightning Talks
Deploying Python environments on top of Mt. Rainier

A process for building preparing artifacts that enable the deployment of a Python computing
environment in a place where there is no Internet access.

Benoit Hamelin

https://doi.org/10.25080/pyyu4582

Hello Project!
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tips for onboarding into contributing to open source

Hannah Aizenman

https://doi.org/10.25080/hxxk4957

swiftascmaps: A colour map library for swifties

A hopefully comedic talk about the colour map library swiftascmaps.

Josh Borrow

https://doi.org/10.25080/uncn2995

Sciris: Simplifying scientific Python

Sciris aims to streamline the development of scientific Python code by making it easier to perform
common tasks. This example illustrates how the same block of fairly typical scientific Python code –
which performs tasks like collecting data from a function running in parallel, saving and loading
files, and 3D plotting – looks like when written in ‘vanilla Python’ compared to using Sciris.

Cliff Kerr, Paula Sanz-Leon, Romesh Abeysuriya

https://doi.org/10.25080/knjj9332

Plotting Slides in Matplotlib

Matplotlib makes easy things easy and hard things possible, like this silly idea of making slides in it.

Elliott Sales de Andrade

https://doi.org/10.25080/wrvp6756

For the python evangelist

Because clearly python needs to make music.

Christine Smit

https://doi.org/10.25080/hcya9443

Renovate: Automating Dependency Management

A brief introduction to Renovate, a tool for automating dependency management in software
projects. The slides can be accessed at https://paddyroddy.github.io/talks/renovate-automating-
dependency-management. Two example parent configurations I maintain are available at https://
github.com/paddyroddy/.github/tree/main/renovate and https://github.com/UCL-ARC/.github/tree/
main/renovate.

Patrick J. Roddy

https://doi.org/10.25080/tkky5633
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Abstract

Multivariate interpolation is a fundamental tool in scientific computing used to approximate
the values of a function between known data points in multiple dimensions. Despite its
importance, the Python ecosystem offers a fragmented landscape of specialized tools for this
task. This fragmentation hinders code reusability, experimentation, and efficient deployment
across diverse hardware. The multinterp package was developed to address this challenge.
It provides a unified interface for various grids used for interpolation (regular, irregular,
and curvilinear), supports multiple backends (CPU, parallel, and GPU), and includes tools for
multivalued interpolation and interpolation of derivatives. This paper introduces multinterp,
demonstrates its capabilities, and invites the community to contribute to its development.

Keywords multivariate, interpolation, gpu, rectilinear, curvilinear, scattered

1. Introduction
In scientific computing, interpolation is a fundamental method used to approximate new
data points within a range of known functional data points. When this concept is applied to
functions with multiple variables, it is known as multivariate interpolation. This technique
is crucial for various scientific applications, including data analysis, numerical modeling,
and visualizing complex datasets.

Over time, the scientific Python ecosystem has developed various specialized tools for
multivariate interpolation. These powerful tools are spread across different packages, each
designed for specific purposes and for distinct data types. This scattering of tools across
multiple packages creates challenges for researchers and practitioners.

One major issue is the inconsistency of interfaces across different packages. The varying
syntax and usage patterns make it difficult for users to switch between interpolation
methods or compare their performance effectively. Additionally, many existing tools are
designed for CPU-only execution, lacking GPU acceleration or parallel processing support.
This limitation can significantly impact performance, especially when dealing with large
datasets or complex interpolation tasks.

Another challenge stems from the restricted functionality of some packages. Certain tools
focus solely on specific types of interpolation, such as those for structured data, while
lacking support for advanced features like multivalued interpolation or derivative calcula-
tions. This specialization often forces researchers to use multiple packages to cover all their
interpolation needs, leading to an inefficient workflow. The need to learn and integrate
various packages increases development time and introduces potential inconsistencies in
the codebase.
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The multinterp package was developed to address these challenges to provide a comprehen-
sive framework for multivariate interpolation in python with several key features. It offers
a unified interface for various interpolation grids, including regular (rectilinear), irregular
(unstructured), and curvilinear grids, allowing users to easily switch between different grid
types without changing their code structure.

Furthermore, multinterp supports multiple backends, including CPU (using numpy and scipy),
parallel processing (using numba), and GPU acceleration (using cupy, pytorch, and jax). This
flexibility enables users to optimize performance based on their available computational
resources. The package also includes tools for multivalued interpolation and interpolation
of derivatives, expanding its utility for a wide range of scientific applications.

Perhaps most importantly, multinterp provides a consistent API that allows easy switching
between different interpolation methods and backends. This feature simplifies code devel-
opment and facilitates experimentation with various interpolation techniques and perfor-
mance optimization strategies.

In the following sections, we will introduce the main concepts of grid interpolation, demon-
strate the capabilities of multinterp for different types of grids, and compare its performance
with existing tools. We will conclude by discussing the project’s current state and inviting
community contributions to further development.

2. Background and Concepts
Before diving into the specifics of multinterp, it is crucial to understand some fundamental
concepts in multivariate interpolation and the challenges they present.

2.1. Interpolation Basics

At its core, interpolation is about approximating functional values between known data
points. This might involve drawing a line or curve between points in one dimension.
The process becomes more complex in multiple dimensions, involving surfaces or hyper-
surfaces.

2.2. Grid Types

The arrangement of known data points, called the grid, significantly influences the choice
of interpolation method and its computational efficiency. In multinterp, we consider three
main types of grids:

1. Rectilinear Grids: These are the simplest and most common. Data points form a
regular pattern along each dimension, though the spacing between points may vary.
Moreover, these grids can be represented by the cross product of 1-dimensional
vectors, making them easy to work with.

2. Curvilinear Grids: These maintain a structured relationship between neighboring
points, but the grid lines may be curved or warped. Their main advantage is that these
grids are monotonic in each coordinate dimension, allowing for an easy and efficient
transformation into a rectilinear grid.

3. Unstructured Grids: These have irregularly spaced data points with no inherent
structure. They are often encountered in experimental data collection or adaptive
numerical methods. Interpolation on unstructured grids is more challenging and
requires more sophisticated algorithms.

2.3. Existing Interpolation Methods

Various methods exist for interpolation, each with its strengths and limitations:
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Table 1.  Grids and structures implemented in “multinterp”.

Grid Structure Geometry

Rectilinear Regular Rectangular mesh

Curvilinear Regular Quadrilateral mesh

Unstructured Irregular Random

• Nearest Neighbor: Assigns the value of the nearest known point or a weighted
average of the nearest few points. Simple but can be inaccurate.

• Linear/Multilinear: Assumes a linear relationship between points. Fast but can miss
complex patterns.

• Polynomial: Higher-order polynomials are used to fit the data. It can capture more
complex relationships but may oscillate between points.

• Spline: Uses piecewise polynomials. Offers a balance between smoothness and accu-
racy.

• Radial Basis Function (RBF): Uses a sum of radially symmetric functions. Useful for
scattered data.

Each of these methods may be implemented differently for different grid types, leading
to the fragmentation in the Python ecosystem that multinterp aims to address. multinterp
currently mainly implements multilinear interpolation and aims to add more methods and
grid types in the future.

3. The multinterp Package
The multinterp package is a unified framework for multivariate interpolation in python,
designed to address the challenges outlined in the previous sections. It offers several key
features:

1. Unified Interface: A consistent API for interpolation, regardless of data structure or
desired backend, reducing the learning curve and promoting code reusability. This
consistency extends across different grid types (rectilinear, curvilinear, and unstruc-
tured), allowing users to switch between grid types with minimal code changes.

2. Hardware Adaptability: Seamless support for CPU (numpy, scipy), parallel (numba), and
GPU (cupy, pytorch, jax) backends, empowering users to optimize performance based
on their computational resources.

3. Broad Functionality: Tools for regular/rectilinear interpolation, multivalued inter-
polation, and derivative calculations, addressing a wide range of scientific problems.

The multinterp package offers several advantages over existing tools:

1. Flexibility: Unlike specialized packages that focus on specific grid types or interpo-
lation methods, multinterp provides a unified framework that can handle various grid
types and interpolation scenarios.

2. Performance: By supporting multiple backends, including GPU acceleration,
multinterp can offer significant performance improvements over CPU-only imple-
mentations, especially for large datasets. Our benchmarks show up to 10x speedup
for large 3D grids when using GPU backends.

3. Ease of Use: The consistent API across different grid types and backends simplifies
the learning curve and makes it easier for users to experiment with different
approaches. For instance, switching from CPU to GPU interpolation often requires
changing a single parameter.

Currently, multinterp primarily implements multilinear interpolation, which balances sim-
plicity, speed, and accuracy for many applications. This method is particularly efficient for

July 10, 2024 3



multinterp  | Lujan, 2024

rectilinear grids. The core implementation uses efficient numpy operations for fast compu-
tation.

However, we recognize the limitations of multilinear interpolation, such as its inability to
capture complex, non-linear relationships in the data. Future development plans include
implementing additional interpolation methods such as polynomial, spline, and radial basis
function interpolation. These methods can offer improved accuracy for certain types of
data, albeit at the cost of increased computational complexity.

The multinterp package is currently in its beta stage, but it offers a strong foundation and
welcomes community contributions to reach its full potential. We invite collaboration to
improve documentation, expand the test suite, and ensure the codebase aligns with the
highest standards of Python package development.

4. Rectilinear Interpolation
Rectilinear grids are the foundation of many scientific computing applications. They are
simple yet powerful, allowing for efficient data representation and manipulation. In a recti-
linear grid, data points form a regular pattern along each dimension, though the spacing
between points may vary.

4.1. The Basics of Rectilinear Grids

A rectilinear grid in 2D can be thought of as a sheet of graph paper where the lines might
not be evenly spaced. In 3D, you can imagine a stack of these sheets, again with potentially
varying spacing between them. Mathematically, we can represent a 2D rectilinear grid using
two 1D arrays of increasing values:

𝑥 = [𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑛]
𝑦 = [𝑦0, 𝑦1, 𝑦2, ..., 𝑦𝑚]

(1)

where 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 for all 𝑖 < 𝑗. The full grid is then represented by the tensor product
𝑥 × 𝑦, resulting in dimensions 𝑛 ×𝑚.

This structure allows for efficient interpolation algorithms, as we can quickly locate the
nearest known values to predict the function’s behavior in unknown spaces. This is because
we only need to search each dimension once and independently of the other.

4.2. Multilinear Interpolation with multinterp

The multinterp package provides a straightforward yet powerful implementation of multi-
linear interpolation. It supports various backends, including numpy, scipy, numba, cupy, pytorch,
and jax, allowing users to choose the most suitable option for their computational environ-
ment.

Figure 1.  Transformation between non-uniform and uniform rectilinear grids. This process is critical to
efficient interpolation on rectilinear grids.
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At the heart of multinterp’s rectilinear interpolation is the map_coordinates function from
scipy.ndimage. This function is versatile, taking an array of input values and an array of
coordinates and returning interpolated values at those coordinates. Here is how it works:

• The input array contains known values on a coordinate (index) grid. For example,
input[i,j,k] is the known value at coordinate (i,j,k).

• The coordinates array contains fractional coordinates where we want to interpolate.
For instance, coordinates[0] = (1.5, 2.3, 3.1) indicates we want to interpolate at a
point between integer grid coordinates.

However, real-world functions are often not defined on a simple coordinate grid. This is
where multinterp’s get_coordinates function comes in. It maps the functional input grid
(defined on real numbers) and the coordinate grid (defined on non-negative integers).

Let us look at a practical example to see how this works:

import `numpy` as np
from multinterp import MultivariateInterp

# Define a function to interpolate
def squared_coords(x, y):
    return x**2 + y**2

# Create a non-uniform rectilinear grid
x_grid = np.geomspace(1, 11, 11) - 1
y_grid = np.geomspace(1, 11, 11) - 1
x_mat, y_mat = np.meshgrid(x_grid, y_grid, indexing="ij")

# Evaluate the function on this grid
z_mat = squared_coords(x_mat, y_mat)

# Create the interpolator
interp = MultivariateInterp(z_mat, [x_grid, y_grid])

# Define points for interpolation
x_new, y_new = np.meshgrid(
 np.linspace(0, 10, 11),
 np.linspace(0, 10, 11),
    indexing="ij",
)

# Perform interpolation
z_interp = interp(x_new, y_new)

In this example, we use a squared coordinates function (x^2+y^2) as our test case. This
function is chosen because it produces a simple curved surface in 3D, making it easy to
verify the interpolation results visually. We create a non-uniform grid using geomspace,
which gives us more points near the origin and fewer points farther out. This non-uniform
grid demonstrates multinterp’s ability to handle varying grid spacings effectively.

The MultivariateInterp class encapsulates the interpolation process, making it easy to create
an interpolator and apply it to new points. This object-oriented approach allows for easy
reuse and chaining of operations, as seen in the next section on derivatives.

4.3. Derivatives

The multinterp package also allows calculating derivatives of the interpolated function
defined on a rectilinear grid. This is done by using the function get_grad, which wraps
numpy’s gradient function to calculate the gradient of the interpolated function at the given
coordinates.

Consider the following function along with its analytical derivatives:
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def trig_func(x, y):
    return y * np.sin(x) + x * np.cos(y)

def trig_func_dx(x, y):
    return y * np.cos(x) + np.cos(y)

def trig_func_dy(x, y):
    return np.sin(x) - x * np.sin(y)

First, we create a sample input gradient and evaluate the function at those points. Notice
that we are not using the analytical derivatives to create the interpolation function. Instead,
we will use these to compare the results of the numerical derivatives.

x_grid = np.geomspace(1, 11, 1000) - 1
y_grid = np.geomspace(1, 11, 1000) - 1
x_mat, y_mat = np.meshgrid(x_grid, y_grid, indexing="ij")

z_mat = trig_func(x_mat, y_mat)

Now, we generate a different grid, which will be used as our query points.

x_new, y_new = np.meshgrid(
 np.linspace(0, 10, 1000),
 np.linspace(0, 10, 1000),
    indexing="ij",
)

Then, we can compare our interpolation function with the analytical function and see that
these are very close to each other.

mult_interp = MultivariateInterp(z_mat, [x_grid, y_grid], backend="cupy")
z_mult_interp = mult_interp(x_new, y_new).get()
z_true = trig_func(x_new, y_new)

We can use the method .diff(argnum) of MultivariateInterp to evaluate numerical deriva-
tives, which provides an object-oriented way to compute gradients. For example, calling
mult_interp.diff(0) returns a MultivariateInterp object that represents the numerical deriv-
ative of the function with respect to the first argument on the same input grid.
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We can now compare the numerical and analytical derivatives and see that these are indeed
very close to each other.

dfdx = mult_interp.diff(0)
z_dfdx = dfdx(x_new, y_new).get()
dfdx_true = trig_func_dx(x_new, y_new)

Similarly, we can compute the derivatives with respect to the second argument and see that
they produce an accurate result.

dfdy = mult_interp.diff(1)
z_dfdy = dfdy(x_new, y_new).get()
dfdy_true = trig_func_dy(x_new, y_new)

The choice of returning object-oriented interpolation functions for the numerical deriva-
tives is beneficial, as it allows for reusability without re-computation and easy chaining of
operations. For example, we can compute the function’s second derivative with respect to
the first argument by calling mult_interp.diff(0).diff(0).

4.4. Multivalued Interpolation

Finally, the multinterp package allows for multivalued interpolation on rectilinear grids via
the MultivaluedInterp class.

Consider the following multivalued function:
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def squared_coords(x, y):
    return x**2 + y**2

def trig_func(x, y):
    return y * np.sin(x) + x * np.cos(y)

def multivalued_func(x, y):
    return np.array([squared_coords(x, y), trig_func(x, y)])

As before, we can generate values on a sample input grid and create a grid of query points.

x_grid = np.geomspace(1, 11, 1000) - 1
y_grid = np.geomspace(1, 11, 1000) - 1
x_mat, y_mat = np.meshgrid(x_grid, y_grid, indexing="ij")

z_mat = multivalued_func(x_mat, y_mat)

x_new, y_new = np.meshgrid(
 np.linspace(0, 10, 1000),
 np.linspace(0, 10, 1000),
    indexing="ij",
)

MultivaluedInterp can easily interpolate the function at the query points and avoid repeated
calculations.
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from multinterp.rectilinear._multi import MultivaluedInterp

mult_interp = MultivaluedInterp(z_mat, [x_grid, y_grid], backend="cupy")
z_mult_interp = mult_interp(x_new, y_new).get()
z_true = multivalued_func(x_new, y_new)

5. Curvilinear Interpolation
A curvilinear grid is a regular grid whose input coordinates are curved or warped in some
regular way. However, simple transformations can nevertheless transform it into a regular
grid. That is, every quadrangle in the grid can be transformed into a rectangle by remapping
its vertices. There are two approaches to curvilinear interpolation in multinterp: the first
requires a “point location” algorithm to determine which quadrangle the input point lies in,
and the second requires a “dimensional reduction” algorithm to generate an interpolated
value from the known values in the quadrangle.

Suppose we have a collection of values for an unknown function and their respective
coordinate points. For illustration, assume the values come from the following function:

July 10, 2024 9



multinterp  | Lujan, 2024

Figure 2.  A curvilinear grid can be transformed into a rectilinear grid by simply remapping its vertices.

def function_1(x, y):
    return x * (1 - x) * np.cos(4 * np.pi * x) * np.sin(4 * np.pi * y**2) ** 2

The points are randomly scattered in the unit square and have no regular structure. This is
achieved by randomly shifting a well-structured grid at every point.

rng = np.random.default_rng(0)
warp_factor = 0.01
x_list = np.linspace(0, 1, 20)
y_list = np.linspace(0, 1, 20)
x_temp, y_temp = np.meshgrid(x_list, y_list, indexing="ij")
rand_x = x_temp + warp_factor * (rng.random((x_list.size, y_list.size)) - 0.5)
rand_y = y_temp + warp_factor * (rng.random((x_list.size, y_list.size)) - 0.5)
values = function_1(rand_x, rand_y)

Suppose we want to interpolate this function on a rectilinear grid, a process called “regrid-
ding.”

grid_x, grid_y = np.meshgrid(
 np.linspace(0, 1, 100),
 np.linspace(0, 1, 100),
    indexing="ij",
)

We use multinterp’s Warped2DInterp and Curvilinear2DInterp classes to do this. The class takes
the following arguments:

• values: an ND-array of values for the function at the points
• grids: a list of ND-arrays of coordinates for the points
• backend: the backend to use for interpolation currently only scipy and numba are sup-

ported for Warped2DInterp, and only scipy is supported for Curvilinear2DInterp for now.

from multinterp.curvilinear import Curvilinear2DInterp, Warped2DInterp

warped_interp = Warped2DInterp(values, (rand_x, rand_y), backend="numba")
warped_interp.warmup()

Once we create the interpolator objects, we can evaluate the functions on the query grids
and compare their time performance.
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start = time()
warped_grid = warped_interp(grid_x, grid_y)
print(f"Warped interpolation took {time() - start:.5f} seconds")

curvilinear_interp = Curvilinear2DInterp(values, (rand_x, rand_y))
start = time()
curvilinear_grid = curvilinear_interp(grid_x, grid_y)
print(f"Curvilinear interpolation took {time() - start:.5f} seconds")

Now, we can compare the interpolation results with the original function. Below, we plot the
original function and the known sample points. Notice that the points are almost rectilinear
but have been randomly shifted to create a more challenging interpolation problem.

plt.imshow(function_1(grid_x, grid_y).T, extent=(0, 1, 0, 1), origin="lower")
plt.plot(rand_x.flat, rand_y.flat, "ok", ms=2, label="input points")
plt.title("Original")
plt.legend(loc="lower right")

Then, we can look at the result for each interpolation method and compare it to the original
function.

July 10, 2024 11



multinterp  | Lujan, 2024

fig, axs = plt.subplots(1, 3, figsize=(9, 6))
titles = ["Original", "WarpedInterp", "CurvilinearInterp"]
grids = [function_1(grid_x, grid_y), warped_grid, curvilinear_grid]

for ax, title, grid in zip(axs.flat, titles, grids):
    im = ax.imshow(grid.T, extent=(0, 1, 0, 1), origin="lower")
    ax.set_title(title)

plt.tight_layout()
plt.show()

In short, multinterp’s Warped2DInterp and Curvilinear2DInterp classes are helpful for interpo-
lating functions on curvilinear grids with a quadrilateral structure but are not perfectly
rectangular.

6. Unstructured Interpolation
Suppose we have a collection of values for an unknown function and their respective
coordinate points. For illustration, assume the values come from the following function:

def function_1(u, v):
    return u * np.cos(u * v) + v * np.sin(u * v)

The points are randomly scattered within a square and have no regular structure.

Figure 3.  Unstructured grids are irregular and often require a triangulation step, which might be
computationally expensive and time-consuming.
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rng = np.random.default_rng(0)
rand_x, rand_y = rng.random((2, 1000)) * 3
values = function_1(rand_x, rand_y)

Suppose we want to interpolate this function on a rectilinear grid.

grid_x, grid_y = np.meshgrid(
 np.linspace(0, 3, 100),
 np.linspace(0, 3, 100),
    indexing="ij",
)

We use multinterp’s UnstructuredInterp class to do this. The class takes the following argu-
ments:

• values: an ND-array of values for the function at the points
• grids: a list of ND-arrays of coordinates for the points
• method: the interpolation method to use, with options “nearest”, “linear”, “cubic” (for

2D only), and “rbf”. The default is 'linear'.

The UnstructuredInterp class is an object-oriented wrapper around scipy.interpolate’s func-
tions for multivariate interpolation on unstructured data, which are NearestNDInterpolator,
LinearNDInterpolator, CloughTocher2DInterpolator, and RBFInterpolator. The advantage of us-
ing multinterp’s UnstructuredInterp class is that it provides a consistent interface for all these
methods, making it easier to switch between them and other interpolators in the multinterp
package.

nearest_interp = UnstructuredInterp(values, (rand_x, rand_y), method="nearest")
linear_interp = UnstructuredInterp(values, (rand_x, rand_y), method="linear")
cubic_interp = UnstructuredInterp(values, (rand_x, rand_y), method="cubic")
rbf_interp = UnstructuredInterp(values, (rand_x, rand_y), method="rbf")

Once we create the interpolator objects, we can use them using the __call__ method, which
takes as many arguments as there are dimensions.

nearest_grid = nearest_interp(grid_x, grid_y)
linear_grid = linear_interp(grid_x, grid_y)
cubic_grid = cubic_interp(grid_x, grid_y)
rbf_grid = rbf_interp(grid_x, grid_y)

Now, we can compare the interpolation results with the original function. Below, we plot
the original function and the known sample points.
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Then, we can look at the result for each interpolation method and compare it to the original
function.
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Finally, multinterp also provides a set of interpolators organized around the concept of
regression. As a demonstration, below, we use a RegressionUnstructuredInterp interpolator,
which uses a Gaussian Process regression model from scikit-learn [1] to interpolate the
function defined on the unstructured grid. The RegressionUnstructuredInterp class takes the
same arguments as the UnstructuredInterp class but requires the user to specify the regres-
sion model to use.
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from multinterp import RegressionUnstructuredInterp

gaussian_interp = RegressionUnstructuredInterp(
 values,
 (rand_x, rand_y),
    model="gaussian-process",
    std=True,
)

gaussian_grid = gaussian_interp(grid_x, grid_y)

7. Performance Comparisons
We conducted a series of benchmarks to assess the performance of multinterp and compare
it with existing tools. The benchmarks evaluated the interpolation speed and accuracy of
multinterp across different grid sizes, dimensions, and backends.

7.1. Benchmark Setup

The benchmarks were conducted using the following setup:

• Test Function: A multivariate function with a known analytical solution generated
the input data.

• Grid Sizes: The input data was generated on grids of varying sizes, ranging from 10x10
to 1000x1000.

• Dimensions: The benchmarks were conducted for both 2D and 3D grids.
• Backends: The benchmarks were run using different backends, including CPU (numpy

and scipy), parallel (numba), and GPU (cupy, pytorch, and jax).

7.2. Comparison with scipy.interpolate.RegularGridInterpolator

The first set of benchmarks compares the performance of multinterp with
scipy.interpolate.RegularGridInterpolator, a widely-used interpolation library in the scien-
tific Python ecosystem. The benchmarks were conducted for both 2D and 3D grids, and the
results are presented in the following figures.
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7.3. Backend Comparison

The second set of benchmarks compares the performance of different backends in
multinterp. The benchmarks were conducted for both 2D and 3D grids, and the results are
presented in the following figures.

7.4. Discussion

The benchmark results demonstrate that multinterp outperforms
scipy.interpolate.RegularGridInterpolator for 2D and 3D grids, especially for larger grid
sizes. This is likely due to the efficient implementation of multinterp’s core functions, such
as map_coordinates and get_coordinates.

The backend comparison shows that GPU backends (cupy, pytorch, and jax) can provide
significant performance improvements for large grid sizes, especially in 3D. However, data
transfer overhead between the CPU and GPU can make GPU backends slower for smaller
grid sizes. Parallel backends (numba) can also provide performance improvements for CPU-
bound tasks, but the benefits are less pronounced than those of GPU backends.

Overall, the benchmark results highlight the advantages of multinterp regarding perfor-
mance and flexibility. The package offers a unified interface for various types of interpo-
lation, supports multiple backends, and includes tools for multivalued interpolation and
interpolation of derivatives.

8. Future Work and Contributions
The multinterp package is currently in its beta stage, and there are several areas where
future development and community contributions would be valuable.

8.1. Planned Features

1. Additional Interpolation Methods: Implement support for additional interpolation
methods, such as spline, polynomial, inverse distance weight, and radial basis func-
tion interpolation. This will give users more options to handle various types of data
and interpolation requirements.

2. Optimization and Performance Improvements: Continue to optimize the core
functions of multinterp to improve performance and efficiency, particularly for large
datasets and high-dimensional interpolation.

3. Documentation and Examples: Expand the documentation and provide more ex-
amples to demonstrate the capabilities of multinterp, including comparisons between
different interpolation methods and grid types.

4. Extended Grid Support: Enhance support for complex grid types and improve inter-
polation efficiency on unstructured grids.

8.2. Community Contributions

We welcome contributions from the community to help improve the multinterp package.
There are several ways to contribute:

1. Code Contributions: Submit pull requests to add new features, fix bugs, or improve
the documentation.

2. Issue Reporting: Report any issues or bugs you encounter using multinterp.
3. Testing: Help expand the test suite to ensure the package works correctly across

various scenarios.
4. Documentation: Contribute to the documentation by writing tutorials, examples, or

improving the existing documentation.

July 10, 2024 17



multinterp  | Lujan, 2024

To get started with contributing, please refer to our Contribution Guidelines for detailed in-
formation on our development process, coding standards, and how to submit pull requests.

8.3. Documentation and Resources

For more information about multinterp, please refer to the following resources:

• Source Code: The source code is hosted on GitHub at https://github.com/alanlujan91/
multinterp

• Issue Tracker: Report bugs or request features on our GitHub Issues page
• Contribution Guidelines: Learn how to contribute at CONTRIBUTING.md
• Examples: A collection of Jupyter notebooks with usage examples can be found in the

examples directory of our GitHub repository

We encourage users to explore these resources and contact the community through our
GitHub Discussions for any questions or feedback.

9. Conclusion
Multivariate interpolation is a cornerstone of scientific computing, yet the Python ecosys-
tem [2] presents a fragmented landscape of tools. While individually powerful, these
packages often lack a unified interface. This fragmentation makes it difficult for researchers
to experiment with different interpolation methods, optimize performance across diverse
hardware, and handle varying data structures (regular, rectilinear, curvilinear, unstruc-
tured).

The multinterp project seeks to change this. Its goal is to provide a unified, comprehensive,
and flexible framework for multivariate interpolation in python. This framework will
streamline workflows by offering:

• Unified Interface: A consistent API for interpolation, regardless of data structure or
desired backend, reducing the learning curve and promoting code reusability.

• Hardware Adaptability: Seamless support for CPU (numpy C. R. Harris et al. [3], scipy P.
Virtanen et al. [4]), parallel (numba S. K. Lam, A. Pitrou, and S. Seibert [5]), and GPU (cupy
R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis [6], pytorch A. Paszke et al. [7], jax
J. Bradbury et al. [8]) backends, empowering users to optimize performance based on
their computational resources.

• Broad Functionality: Tools for regular/rectilinear interpolation, multivalued interpo-
lation, and derivative calculations, addressing a wide range of scientific problems.

The multinterp package (https://github.com/alanlujan91/multinterp) is currently in its beta
stage. It offers a strong foundation but welcomes community contributions to reach its full
potential. We invite collaboration to improve documentation, expand the test suite, and
ensure the codebase aligns with the highest standards of Python package development.
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Abstract

We present mandala, a Python library that largely eliminates the accidental complexity of sci-
entific data management and incremental computing. While most traditional and/or popular
data management solutions are based on logging, mandala takes a fundamentally different
approach, using memoization of function calls as the fundamental unit of saving, loading,
querying and deleting computational artifacts.

It does so by implementing a compositional form of memoization, which keeps track of how
memoized functions compose with one another. In this way: (1) complex computations are
effectively memoized end-to-end, and become ‘interfaces’ to their own intermediate results
by retracing the memoized calls; (2) all computations in a project form a single computational
graph, which can be explored, queried and manipulated in high-level ways through a compu�
tation frame, which is a natural generalization of a dataframe that replaces columns by a
computation graph, and rows by (partial) executions of this graph.

Several features implemented on top of the core memoization data structures — such as
natively and transparently handling Python collections, in-memory caching of intermediate
results, and a flexible versioning system with dynamic dependency tracking — turn mandala
into a practical and simple tool for managing and interacting with computational data.

Keywords scientific data management, machine learning

1. Introduction
Numerical experiments and simulations are growing into a central part of many areas of
science and engineering [1]. Recent trends in computation-intensive fields, such as machine
learning, point towards (1) ever-increasing complexity of computational pipelines, and (2)
adoption in more safety-critical domains, such as autonomous driving [2] and healthcare
[3], [4].

These developments impose opposing constraints on the tools used to manage the resulting
computational artifacts. On the one hand, they should be simple and easy to use by
researchers, with a minimal learning curve and unobtrusive syntax and semantics. On the
other hand, they should deliver a lot of added functionality, such as high-level operations
[5], full data & code provenance auditing [6] and reproducibility [7] in complex projects.
Rules and best practices that help with these requirements exist and are well-known [8],
[9], but still require manual effort, attention to extraneous details, and discipline to follow.
Researchers often operate under time pressure and/or the need to quickly iterate on code,
which makes these best ‘practices’ a rather impractical time investment.

Thus, ideally we would like a system that (1) does not get in the way by imposing a complex
new language/semantics/syntax, (2) provides powerful high-level data management opera-
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tions over complex computational projects, and (3) incorporates best practices by design
and without cognitive overhead.

# decorate any
# Python funcs
@op
def f(x):
  return x**2

@op
def g(x, y):
  return x + y

...

(a)

storage = Storage()

# memoizing context
with storage:
  for x in range(3):
    y = f(x)

In [1]: y # wrapped value
Out[1]: AtomRef(4,
          hid='628...',
          cid='a82...')

(b)

with storage:
  # just add more calls
  # & reuse old results
  for x in range(5):
    y = f(x)
    # unwrap for control flow
    if storage.unwrap(y) > 5:
      z = g(x, y)

# the "program" is now end-
to-end
# memoized & retraceable

(c)
Figure 1.  Basic imperative usage of mandala. (a): add the @op decorator to any Python functions to make
them memoizable. (b): create a Storage, and use it as a context manager to automatically memoize any
calls to @op-decorated functions in the block. Memoized functions return Ref objects, which wrap a value
with two pieces of metadata: a content ID, which is a hash of the value of the object, and a history ID,
which is a hash of the identity of the @op that produced the Ref (if any), and the history IDs of the @op’s
inputs. (c): the storage context allows simple incremental computation and recovery from failures. Here,
we add more computations while automatically reusing already computed values.

In this paper we present mandala, our proposal for such a system. It integrates data man�
agement logic and best practices such as

• Full data provenance tracking
• Idempotent & reproducible computation
• Content-addressable versioning of code and its dependencies
• Declarative high-level manipulation of persisted computational graphs

into Python’s already familiar syntax and semantics (Figures Figure 1 and Figure 2). The
integration aims to be maximally transparent and unobtrusive, so that the user can focus
on the essential complexity (the scientific problem at hand), rather than on the accidental
complexity (the data management tools necessary to implement the solution) [10].

The rest of this paper presents the design and main functionalities of mandala, and is orga-
nized as follows:

• In Section 2, we describe how memoization is designed, how this allows memoized
calls to be composed and memoized results to be reused without storage duplication,
and how this enables the retracing pattern of interacting with computational artifacts.

• In Section 3, we introduce the concept of a computation frame, which generalizes a
dataframe by replacing columns with a computational graph, and rows with individ-
ual computations that (partially) follow this graph. Computation frames allow high-
level exploration and manipulation of the stored computation graph, such as adding
the calls that produced/used given values to the graph, deleting all computations that
depend on the calls captured in the frame, and restricting the frame to a particular
subgraph or subset of values with given properties.

• In Section 4, we describe some other features of mandala necessary to make it a practical
tool, such as:

‣ Representing Python collections in a way transparent to the storage, so that the
membership relationships between a collection and its items are propagated
through the saved computational graph;

‣ Caching of intermediate results to speed up retracing and memoization;
‣ A flexible versioning system with automatic dynamic dependency tracking.

July 10, 2024 21



Mandala  | Makelov, 2024

Finally, we give an overview of related work in Section 5.

2. Core Concepts

2.1. Memoization and the Computational Graph

Memoization is a technique that stores the results of expensive function calls to avoid
redundant computation. mandala uses automatic memoization [11] which is applied via the
combination of a decorator (@op) and a context manager which specifies the Storage object
to use (Figure 1). The memoization can optionally be made persistent to disk, which is what
you would typically want in a long-running project. Any Python function can be memoized
(as long as its inputs and outputs are serializable by the joblib library; see the limitations
section Section 6 for caveats); there is no restriction on the type, number or naming scheme
(positional, keyword, variadic, or variable keyword) of the arguments or return values.

2.1.1. Call and Ref objects, and content/history IDs.:

Refs and Calls are the two atomic data structures in mandala’s model of computations. When
a call to an @op-decorated function f is executed inside a storage context, this results in the
creation of

• A Ref object for each input to the call. These wrap the ‘raw’ values passed as inputs
together with content IDs (hashes of the Python objects) and history IDs (hashes of the
memoized calls that produced these values, if any).

‣ If an input to the call is already a Ref object, it is passed through as is;
‣ If it is a ‘raw’ (i.e., non-Ref) value, a new Ref object is created with a ‘empty’ history

ID that is simply a hash of the content ID itself.
• A Call object, which has pointers to the input and output (defined below) Refs of the call

to f, as well as a content ID for the call (a hash of the identity of f and the content IDs of
the input Refs) and a history ID (by analogy, a hash of the identity of f and the history
IDs of the inputs). The version of f is also part of the identity of f; see the versioning
section Section 4.2 for details.

• A Ref object for each return value of the call. These are again assigned content IDs
by value, and history IDs by hashing the tuple (history ID of the call, corresponding
output name¹).

The Refs and the Call are then stored in the storage backend, and the next time f is called on
inputs that have the same content IDs, the stored Call is looked up to find the output Refs,
which are then returned (possibly with properly updated history IDs, if the call exists in
storage by content ID only). The combination of all stored Calls and Refs across memoized
functions form the computational graph represented by the storage. Importantly, the
‘interesting’ structure of this graph is built up automatically by the way the user composes
memoized calls.

2.2. Motivation for the Design of Memoization

2.2.1. Why content and history IDs?:

The simultaneous use of content and history IDs has a few subtle advantages. First, it allows
for the de-duplication of storage, as the same content ID can be used to store the same value
produced by different computations. For instance, there may be many computaitions all
producing the value 42 (or a large all-zero array), but only one copy of 42 is stored in the

¹Since Python functions don’t have designated output names, we instead generate output names
automatically using the order in the tuple of return values.
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backend. At the same time, the history IDs allow us to distinguish between computations
that produced the same value, but in different ways. This avoids ‘parasitic’ results in declar-
ative queries. For example, a call to f may result in 42, and we may be interested in all calls
that were ran on this particular 42 returned by f and not on any other Ref whose value
happens to be 42. Without history IDs, it would be impossible to make this distinction in the
stored computational graph.

2.2.2. Why memoization?:

Memoization is an unusual choice for data management systems, most of which are based
on logging, i.e. explicitly pointing to the value to be saved and the address where it should
be saved (whether this is some kind of name or a file path). Basing data management on
memoization means that the ‘address’ of a value is now implicit in the code that produced
it, and the value itself is stored in a shared storage backend. This has several advantages:

• It eliminates the need to manually name artifacts. This eliminates a major source
of accidental complexity: names are arbitrary, ambiguous, and can drift away from
the actual content of the value they point to over time. On the other hand, names are
not strictly necessary, because the composition of memoized functions that produced
a given value — which must be specified anyway for the computation to take place —
is already an unambiguous pointer to it.

• Since the @op decorator encourages (and in a sense enforces) composition of @ops, it
automatically builds up a computational graph of the project. Most data manage-
ment tasks — e.g., a frequent use case is getting a table of relationships between some
variables — are naturally expressed as queries over this graph, as we will see in
Section 3.

• It organizes storage functionality around a familiar and flexible interface: the
function call. This automatically enforces the good practice of partitioning code into
functions, and eliminates extra ‘accidental’ code to save and load values explicitly.
Furthermore, it synchronizes failures between computation and storage, as the mem-
oized calls are the natural points to recover from.

On the other hand, memoization suffers from the following limitations:

• Referring to values without reference to the code that produced or used them becomes
difficult, because from the point of view of storage the ‘identity’ of a value is its place
in the computational graph. We discuss practical ways to overcome this in Section 3.

• Modifying @op functions requires care, as changes may invalidate the stored computa-
tional graph. We discuss a versioning system that automates this process in Section 4.2.

2.3. Retracing as a Versatile Imperative Interface to the Stored Computation Graph

The compositional nature of memoization makes it possible to build complex computations
out of calls to memoized functions, turning the entire computation into an end-to-end-
memoized interface to its own intermediate results. The main way to interact with such
a persisted computation is through retracing, which means stepping through memoized
code with the purpose of resuming from a failure, loading intermediate values, or contin-
uing from a particular point with new computations. A small example of retracing is shown
in Figure 1 (c).

This pattern is simple yet powerful, as it allows the user to interact with the stored compu-
tation graph in a way that is adapted to their use case, and to explore the graph in a way that
is natural and familiar to them. It also simplifies the management of state in an interactive
environment such as a Jupyter notebook, because it makes it very cheap to re-run cells in
order to recreate the intended state of local variables.
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3. Computation Frames

In [1]:
# get the computation frame
for f
storage.cf(f).\
  # add all computations
reachable
  # from calls to f
  expand().\
  # extract as a dataframe
  eval()
Out[1]: Extracting tuples
from the
computation graph:
  output_0 = f(x=x)
  output_1 = g(y=output_0,
x=x)
       

(a) (b) (c)
Figure 2.  Basic declarative usage of mandala and an example of computation frames.

In order to be able to explore and manipulate the full stored computation graph, patterns
like retracing are insufficient, because they require the complete code producing part of
the graph to be available. To complement retracing, we introduce the ComputationFrame data
structure, which is a high-level declarative interface to the stored computation graph.

3.1. Motivation and Intuition

Intuitively, a computation frame is a way to organize a collection of saved @op calls into
groups, where the calls in each group have an analogous role in the computation, and the
groups form a high-level computational graph of variables (which represent groups of Refs)
and functions (groups of Calls). The illustration in Figure 2 (c) shows a visualization of a
computation frame extracted from the computations in Figure 1.

This kind of organization is useful because it reflects how the user thinks about the compu-
tation, and allows them to tailor the exploration of the computation graph to a particular
use case, much like a database view. For instance, sometimes it makes sense to group the
outputs of several different @ops into a single variable because they are treated the same
way by downstream computations.

From another point of view, computation frames are ‘views’ of the stored computation
graph, analogous to database views. In particular, they may contain multiple references to
the same Ref or Call object from different nodes of the graph, and do not necessarily contain
all calls to a given @op.

3.2. Formal Definition

A computation frame (Figure 2) consists of the following data:

• Computation graph: a directed graph 𝐺 = (𝑉 , 𝐹 ,𝐸) where 𝑉  are named variables and
𝐹  are named instances of @op-decorated functions. The edges 𝐸 are labeled with the
input/output names of the adjacent functions. An example is shown in Figure 2 (c);

• Groups of Refs and Calls: for each variable 𝑣 ∈ 𝑉 , a set of (history IDs of) Refs 𝑅𝑣, and
for each function 𝑓 ∈ 𝐹  with underlying @op 𝑜𝑓 , a set of (history IDs of) Calls 𝐶𝑓 ;

subject to the constraint that: for every call 𝑐 ∈ 𝐶𝑓 , if there’s an input/output edge labeled 𝑙
connecting 𝑓  to some variable 𝑣, then if 𝑐 has a Ref 𝑟𝑙 corresponding to input/output name
𝑙, we have 𝑟𝑙 ∈ 𝑅𝑣.
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In other words, when we look at all calls in 𝑓 ∈ 𝐹 , their inputs/outputs must be present in
the variables connected to 𝑓  under the respective input/output name.

3.3. Basic Usage

The main advantage of computation frames is that they allow iterative exploration of
the computation graph, and high-level grouped operations over computations with some
shared structure. For example, we can use them for:

• Iteratively expanding the frame with functions that generated or used existing
variables: this is useful for exploring the computation graph in a particular direction,
or for adding more context to a particular computation. For example, in Figure 2 (a),
we start with a computation frame containing only the calls to f, and then expand it
to include all calls that can be reached from the memoized calls to f via their inputs/
outputs, which adds the calls to g to the frame.

• Converting the frame into a dataframe: this is useful at the end of an exploration,
when we want to get a convenient tabular representation of the captured computation
graph. The table is obtained by collecting all terminal Refs in the frame’s computational
graph (i.e., those that are not inputs to any function in the frame), computing their
computational history in the frame (grouped by variable), and joining the resulting
tables over the variables. This is shown in Figure 2 (right). In particular, as shown
in the example, this step may produce nulls, as the computation frame can contain
computations that only partially follow the graph.

• Performing high�level storage manipulations: such as deleting all calls captured in
the frame as well as all calls that depend on them, available using the .delete_calls()
method on the frame.

Computation frames are a powerful tool for exploring and manipulating the stored compu-
tation graph, and we’re excited to explore their full potential in future work.

4. Main Extra Features

4.1. Data Structures

Python’s native collections — lists, dicts, sets — can be memoized transparently by mandala,
using customized type annotations, e.g. MList[int] inheriting from List[int], …. By applying
this type annotation, individual elements as well as the collection itself are memoized as
Refs (with the collection merely pointing to the Refs of its elements to avoid duplication).

This is implemented fully on top of the core memoization machinery, using ‘internal’ @ops
like e.g. __make_list__ which, given the elements of a list as variadic inputs, generates a
ListRef (subclass of Ref) that points to the Refs of the elements. In this way, collections are

@op
def avg_items(xs: MList[int]) -> float:
  return sum(xs) / len(xs)

@op
def get_xs(n) -> MList[int]:
  return list(range(n))

with storage:
  xs = get_xs(10)
  for i in range(2, 10, 2):
    avg = avg_items(xs[:i])
   

Figure 3.  Illustration of native collection memoization in mandala. The custom type annotation MList[int]
is used to memoize a list of integers as a list of pointers to element Refs.
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naturally incorporated in the computation graph. These internal @ops are applied automat-
ically when a collection is passed as an argument to a memoized function, or when a
collection is returned from a memoized function (Figure 3).

4.2. Versioning

It is crucial to have a flexible and powerful code versioning system in a data management
tool, as it allows the user to keep track of the evolution of their computations, and to easily
recover from mistakes. mandala provides the option to use a versioning system with three
main features:

• Per�function content�addressed versioning [12], [13], where the version of a func-
tion is a hash of its source code and the hashes of the functions it calls. The storage can
determine, based only on the state of the codebase, whether a given call is up-to-date
or not.

• Dynamic dependency tracking, where each function call traces the dependencies it
calls. This avoids the need for static analysis of the code to find dependencies, which
can result in many false positives and negatives, especially in a dynamic language like
Python. Moreover, it provides a stronger notion of reusability, as certain changes of
the codebase may invalidate only a part of all memoized calls to an @op.

• The flexibility to mark changes as backward�compatible or not, which allows the
user to maintain a stable interface to computations when performing routine refac-
toring or adding logging/debugging code.

5. Related Work
mandala combines ideas from several existing projects, but is unique in the Pythonic way it
makes complex memoized computations easy to query, manipulate and version.

Memoization. There are several memoization solutions for Python that lack the composi-
tional nature of mandala, as well as the versioning and querying tools: the builtin functools
module provides decorators such as lru_cache for memoization; the incpy project [14]
enables automatic persistent memoization of Python functions directly on the interpreter
level; the funsies project [15] is a memoization-based distributed workflow executor that
uses a similar hashing approach to keep track of which computations have already been
done; koji [16] is a design for an incremental computation data processing framework that
unifies over different resource types (files or services), and uses an analogous notion of
hashing to keep track of computations.

Computation Frames. Computation frames are closely related to the relational model [17],
to graph databases, and to certain versatile in-memory data structures based on functors
ℱ : 𝒞 → 𝑺𝒆𝒕 where 𝒞 is a finite category [18].

Versioning. The unison programming language [13] uses a content-addressed system for
code storage, where a function is identified by the hash of its syntax tree. The language
shares many other features and goals with mandala, such as use of serializable values and
pure functions to ensure reproducibility.

The dynamic tracing mechanism used to capture dependencies is somewhat similar to the
@tf.function decorator in the TensorFlow library [19], which traces the function calls to
other @tf.function-decorated functions made during execution and builds a computation
graph out of them. Unlike @tf.function, mandala’s versioner uses content (code) hashes to
automatically detect changes in dependencies, and does not build a fine-grained model of
a function’s execution, but rather only tracks the set of its dependencies.
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The revision history of each function in the codebase is organized in a bare-bones git
repository [12]: it is a content-addressed tree, where each edge tracks a diff from the content
at one endpoint to that at the other. Additional metadata indicates equivalence classes of
semantically equivalent contents.

6. Limitations
Computing deterministic content IDs of any Python object is difficult. mandala uses the
joblib library to serialize Python objects into byte strings, and then hashes these strings
to get the content ID. This approach is not perfect, as it is not always possible to serialize
Python objects, and even when it is, the serialization may not be unique. For example, two
Python objects x, y which satisfy x == y may not have the same content ID (e.g., True and 1).
Furthermore, hashing is sensitive to small changes in the input, such as numerical precision
in floating point numbers. Finally, complex Python objects may contain state that is not
intrinsically part of the object’s identity, such as resource utilization data (e.g., memory
addresses). This can lead to different content IDs before and after a round trip through the
storage backend. These issues don’t come up often as long as all initial Refs are created from
simple Python objects: complex objects are hashed and saved once when returned from an
@op, and then referred to by their content ID.

Non�breaking versioning is difficult. The ability to mark code changes as backward-
compatible or not may lead to situations where the storage ‘believes’ that a call is up-to-date,
but in reality it is not. For example, a function f can be changed by extracting a subroutine
g out of it. The semantics of f is unchanged, so past calls are still valid, but g is now an
invisible (to the storage) dependency of f. Care should be taken to avoid such situations
until an automatic solution is implemented.

7. Conclusion
mandala is being actively developed, and has the potential to considerably simplify the way
scientific data is managed and interacted with in Python. The author has already used it
extensively to manage several multi-month machine learning projects, and has found it to
be a very powerful tool for managing complex computations. We hope that this paper has
given a good overview of the core concepts of mandala, and that the reader will be interested
in exploring the library further.
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Abstract

Cilia are organelles found on the surface of some cells in the human body that sweep rhyth-
mically to transport substances. Dysfunctional cilia are indicative of diseases that can disrupt
organs such as the lungs and kidneys. Understanding cilia behavior is essential in diagnos-
ing and treating such diseases. But, the tasks of automatically analyzing cilia are often a
labor and time-intensive since there is a lack of automated segmentation. In this work we
overcome this bottleneck by developing a robust, self-supervised framework exploiting the
visual similarity of normal and dysfunctional cilia. This framework generates pseudolabels
from optical flow motion vectors, which serve as training data for a semi-supervised neural
network. Our approach eliminates the need for manual annotations, enabling accurate and
efficient segmentation of both motile and immotile cilia.

Keywords Cilia, Unsupervised biomedical Image Segmentation, Optical Flow,
Autoregressive, Deep Learning

1. Introduction
Cilia are hair-like membranes that extend out from the surface of the cells and are present
on a variety of cell types such as lungs and brain ventricles and can be found in the
majority of vertebrate cells. Categorized into motile and primary, motile cilia can help the
cell to propel, move the flow of fluid, or fulfill sensory functions, while primary cilia act
as signal receivers, translating extracellular signals into cellular responses [1]. Ciliopathies
is the term commonly used to describe diseases caused by ciliary dysfunction. These
disorders can result in serious issues such as blindness, neurodevelopmental defects, or
obesity [2]. Motile cilia beat in a coordinated manner with a specific frequency and pattern
[3]. Stationary, dyskinetic, or slow ciliary beating indicates ciliary defects. Ciliary beating
is a fundamental biological process that is essential for the proper functioning of various
organs, which makes understanding the ciliary phenotypes a crucial step towards under-
standing ciliopathies and the conditions stemming from it [4].

Identifying and categorizing the motion of cilia is an essential step towards understanding
ciliopathies. However, this is generally an expert-intensive process. Studies have proposed
methods that automate the ciliary motion assessment [5]. These methods rely on large
amounts of labeled data that are annotated manually which is a costly, time-consuming, and
error-prone task. Consequently, a significant bottleneck to automating cilia analysis is a lack
of automated segmentation. Segmentation has remained a bottleneck of the pipeline due
to the poor performance of even state-of-the-art models on some datasets. These datasets
tend to exhibit significant spatial artifacts (light diffraction, out-of-focus cells, etc.) which
confuse traditional image segmentation models [6].

Video segmentation techniques tend to be more robust to such noise, but still struggle due to
the wild inconsistencies in cilia behavior: while healthy cilia have regular and predictable
movements, unhealthy cilia display a wide range of motion, including a lack of motion
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altogether [7]. This lack of motion especially confounds movement-based methods which
otherwise have no way of discerning the cilia from other non-cilia parts of the video. Both
image and video segmentation techniques tend to require expert-labeled ground truth
segmentation masks. Image segmentation requires the masks in order to effectively train
neural segmentation models to recognize cilia, rather than other spurious textures. Video
segmentation, by contrast, requires these masks in order to properly recognize both healthy
and diseased cilia as a single cilia category, especially when the cilia show no movement.

To address this challenge, we propose a two-stage image segmentation model designed to
obviate the need for expert-drawn masks. We first build a corpus of segmentation masks
based on optical flow (OF) thresholding over a subset of healthy training data with guar-
anteed motility. We then train a semi-supervised neural segmentation model to identify
both motile and immotile data as a single segmentation category, using the flow-generated
masks as “pseudolabels”. These pseudolabels operate as “ground truth” for the model while
acknowledging the intrinsic uncertainty of the labels. The fact that motile and immotile cilia
tend to be visually similar in snapshot allows us to generalize the domain of the model from
motile cilia to all cilia. Combining these stages results in a semi-supervised framework that
does not rely on any expert-drawn ground-truth segmentation masks, paving the way for
full automation of a general cilia analysis pipeline.

The rest of this article is structured as follows: The Section 2 enumerates the studies relevant
to our methodology, followed by a detailed description of our approach in the Section 3.
Finally, the Section 4 delineates our experiment and provides a discussion of the results
obtained.

2. Background
Dysfunction in ciliary motion indicates diseases known as ciliopathies, which can disrupt
the functionality of critical organs like the lungs and kidneys. Understanding ciliary motion
is crucial for diagnosing and understanding these conditions. The development of diagnosis
and treatment requires the measurement of different cell properties including size, shape,
and motility [8].

Accurate analysis of ciliary motion is essential but challenging due to the limitations of
manual analysis, which is labor-intensive, subjective, and prone to error. [5] proposed a
modular generative pipeline that automates ciliary motion analysis by segmenting, repre-
senting, and modeling the dynamic behavior of cilia, thereby reducing the need for expert
intervention and improving diagnostic consistency. [9] developed a computational pipeline
using dynamic texture analysis and machine learning to objectively and quantitatively
assess ciliary motion, achieving over 90% classification accuracy in identifying abnormal
ciliary motion associated with diseases like primary ciliary dyskinesia (PCD). Additionally,
[4] explored advanced feature extraction techniques like Zero-phase PCA Sphering (ZCA)
and Sparse Autoencoders (SAE) to enhance cilia segmentation accuracy. These methods
address challenges posed by noisy, partially occluded, and out-of-phase imagery, ultimately
improving the overall performance of ciliary motion analysis pipelines. Collectively, these
approaches aim to enhance diagnostic accuracy and efficiency, making ciliary motion
analysis more accessible and reliable, thereby improving patient outcomes through early
and accurate detection of ciliopathies. However, these studies rely on manually labeled data.
The segmentation masks and ground-truth annotations, which are essential for training
the models and validating their performance, are generated by expert reviewers. This
dependence on manually labeled data is a significant limitation making automated cilia
segmentation the bottleneck to automating cilia analysis.
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In the biomedical field, where labeled data is often scarce and costly to obtain, several
solutions have been proposed to augment and utilize available data effectively. These
include semi-supervised learning [10], which utilizes both labeled and unlabeled data to
enhance learning accuracy by leveraging the data’s underlying distribution. Active learning
[11] focuses on selectively querying the most informative data points for expert labeling,
optimizing the training process by using the most valuable examples. Data augmentation
techniques [12], [13], [14], [15], [16], [17], [18], [19], such as image transformations and
synthetic data generation through Generative Adversarial Networks [20], [21], increase the
diversity and volume of training data, enhancing model robustness and reducing overfit-
ting. Transfer learning [16], [22], [23], [24] transfers knowledge from one task to another,
minimizing the need for extensive labeled data in new tasks. Self-supervised learning
[25], [26], [27] creates its labels by defining a pretext task, like predicting the position of
a randomly cropped image patch, aiding in the learning of useful data representations.
Additionally, few-shot, one-shot, and zero-shot learning techniques [28], [29] are designed
to operate with minimal or no labeled examples, relying on generalization capabilities or
metadata for making predictions about unseen classes.

A promising approach to overcome the dependency on manually labeled data is the use
of unsupervised methods to generate ground truth masks. Unsupervised methods do not
require prior knowledge of the data [30]. Using domain-specific cues unsupervised learning
techniques can automatically discover patterns and structures in the data without the need
for labeled examples, potentially simplifying the process of generating accurate segmenta-
tion masks for cilia. Inspired by advances in unsupervised methods for image segmentation,
in this work, we firstly compute the motion vectors using optical flow of the ciliary regions
and then apply autoregressive modelling to capture their temporal dynamics. Autoregres-
sive modelling is advantageous since the labels are features themselves. By analyzing the
OF vectors, we can identify the characteristic motion of cilia, which allows us to generate
pseudolabels as ground truth segmentation masks. These pseudolabels are then used to
train a robust semi-supervised neural network, enabling accurate and automated segmen-
tation of both motile and immotile cilia.

3. Methodology
Dynamic textures, such as sea waves, smoke, and foliage, are sequences of images of
moving scenes that exhibit certain stationarity properties in time [31]. Similarly, ciliary
motion can be considered as dynamic textures for their orderly rhythmic beating. Taking
advantage of this temporal regularity in ciliary motion, OF can be used to compute the flow
vectors of each pixel of high-speed videos of cilia. In conjunction with OF, autoregressive
(AR) parameterization of the OF property of the video yields a manifold that quantifies the
characteristic motion in the cilia. The low dimension of this manifold contains the majority
of variations within the data, which can then be used to segment the motile ciliary regions.

3.1. Optical Flow Properties

Taking advantage of this temporal regularity in ciliary motion, we use OF to capture the
motion vectors of ciliary regions in high-speed videos. OF provides the horizontal (𝑢) and
vertical (𝑣) components of the motion for each pixel. From these motion vectors, several
components can be derived such as the magnitude, direction, divergence, and importantly,
the curl (rotation). The curl, in this context, represents the rotational motion of the cilia,
which is indicative of their rhythmic beating patterns. We extract flow vectors of the video
recording of cilia, under the assumption that pixel intensity remains constant throughout
the video.

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢𝛿𝑡, 𝑦 + 𝑣𝛿𝑡, 𝑡 + 𝛿𝑡) (1)

July 10, 2024 31



Training a Supervised Cilia Segmentation Model from Self-Supervision  | Vaezi & Quinn, 2024

Figure 1.  A sample of three videos in our cilia dataset with their manually annotated ground truth masks.

Figure 2.  Representation of rotation (curl) component of OF at a random time

Where 𝐼(𝑥, 𝑦, 𝑡) is the pixel intensity at position (𝑥, 𝑦) a time 𝑡. Here, (𝑢𝛿𝑡, 𝑣𝛿𝑡) are small
changes in the next frame taken after 𝛿𝑡 time, and (𝑢, 𝑣), respectively, are the OF compo-
nents that represent the displacement in pixel positions between consecutive frames in the
horizontal and vertical directions at pixel location (𝑥, 𝑦).

3.2. Autoregressive Modeling

Figure 2 shows a sample of the OF component at a random time. From OF vectors, elemental
components such as rotation are derived, which highlights the ciliary motion by capturing
twisting and turning movements. To model the temporal evolution of these motion vectors,
we employ an autoregressive (AR) model [32]. This model captures the dynamics of the
flow vectors over time, allowing us to understand how the motion evolves frame by frame.
The AR model helps in decomposing the motion into a low-dimensional subspace, which
simplifies the complex ciliary motion into more manageable analyses.

𝑦𝑡 = 𝐶𝑥𝑡 + �⃗� (2)

⃗𝑥𝑡 = 𝐴1 ⃗𝑥𝑡−1 +𝐴2 ⃗𝑥𝑡−2 + ... + 𝐴𝑑 ⃗𝑥𝑡−𝑑 + ⃗𝑣𝑡 (3)

In equation Equation 2, ⃗𝑦𝑡 represents the appearance of cilia at time 𝑡 influenced by noise
�⃗�. Equation Equation 3 represents the state ⃗𝑥 of the ciliary motion in a low-dimensional
subspace defined by an orthogonal basis 𝐶 at time 𝑡, plus a noise term ⃗𝑣𝑡 and how the state
changes from 𝑡 to 𝑡 + 1.

July 10, 2024 32



Training a Supervised Cilia Segmentation Model from Self-Supervision  | Vaezi & Quinn, 2024

Figure 3.  The pixel representation of the 5-order AR model of the OF component of a sample video. The
𝑥 and 𝑦 axes correspond to the width and height of the video.

Equation Equation 3 is a decomposition of each frame of a ciliary motion video ⃗𝑦𝑡 into a
low-dimensional state vector ⃗𝑥𝑡 using an orthogonal basis 𝐶. This equation at position 𝑥𝑡
is a function of the sum of 𝑑 of its previous positions ⃗𝑥𝑡−1, ⃗𝑥𝑡−2, ⃗𝑥𝑡−𝑑, each multiplied by its
corresponding coefficients 𝐴 = 𝐴1, 𝐴2, ..., 𝐴𝑑. The noise terms �⃗� and ⃗𝑣 are used to represent
the residual difference between the observed data and the solutions to the linear equations.
The variance in the data is predominantly captured by a few dimensions of 𝐶, simplifying
the complex motion into manageable analyses.

Each order of the autoregressive model roughly aligns with different frequencies within
the data, therefore, in our experiments, we chose 𝑑 = 5 as the order of our autoregressive
model. This choice allows us to capture a broader temporal context, providing a more
comprehensive understanding of the system’s dynamics. We then created raw masks from
this lower-dimensional subspace, and further enhanced them with adaptive thresholding
to remove the remaining noise.

In Figure  3, the first-order AR parameter is showing the most variance in the video,
which corresponds to the frequency of motion that cilia exhibit. The remaining orders
have correspondence with other different frequencies in the data caused by, for instance,
camera shaking. Evidently, simply thresholding the first-order AR parameter is adequate to
produce an accurate mask, however, in order to get a more refined result we subtracted the
second order from the first one, followed by a Min-Max normalization of pixel intensities
and scaling to an 8-bit unsigned integer range. We used adaptive thresholding to extract
the mask on all videos of our dataset. The generated masks exhibited under-segmentation
in the ciliary region, and sparse over-segmentation in other regions of the image. To over-
come this, we adapted a Gaussian blur filter followed by an Otsu thresholding to restore
the under-segmentation and remove the sparse over-segmentation. Figure 4 illustrates the
steps of the process.

3.3. Training the model

Our dataset includes 512 videos, with 437 videos of dyskinetic cilia and 75 videos of healthy
motile cilia, referred to as the control group. The control group is split into %85 and %15
for training and validation respectively. 108 videos in the dyskinetic group are manually
annotated which are used in the testing step. Figure  1 shows annotated samples of our
dataset.

In our study, we employed a Feature Pyramid Network (FPN) [33] architecture with a
ResNet-34 encoder. The model was configured to handle grayscale images with a single

Figure 4.  The process of computing the masks. a) Subtracting the second-order AR parameter from
the first-order, followed by b) Adaptive thresholding, which suffers from under/over-segmentation. c) A
Gaussian blur filter, followed by d) An Otsu thresholding eliminates the under/over-segmentation.
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Table 1.  Summary of model architecture, training setup, and dataset distribution

Aspect Details

Architecture FPN with ResNet-34 encoder

Input Grayscale images with a single input channel

Batch Size 2

Training Samples 28,869

Validation Samples 5,095

Test Samples 108

Loss Function Binary Cross-Entropy Loss

Optimizer Adam optimizer with a learning rate of 10⁻³

Evaluation Metric Dice score during training, validation, and testing

Data Augmentation Techniques Resizing, random cropping, and rotation

Implementation Using a Python library with Neural Networks for Image Seg-
mentation based on PyTorch [34]

input channel and produce binary segmentation masks. For the training input, one mask
is generated per video using our methodology, and we use all of the frames from each
video in the control group making a total of 33,964 input images. We utilized Binary Cross-
Entropy Loss for training and the Adam optimizer with a learning rate of 10⁻³. To evaluate
the model’s performance, we calculated the Dice score during training and validation. Data
augmentation techniques, including resizing, random cropping, and rotation, were applied
to enhance the model’s generalization capability. The implementation was done using a
library [34] based on PyTorch Lightning to facilitate efficient training and evaluation.
Table 1 contains a summary of the model parameters and specifications.

The next section discusses the results of the experiment and the performance of the model
in detail.

4. Results and Discussion
The model’s performance metrics, including IoU, Dice score, sensitivity, and specificity, are
summarized in Table 2. The validation phase achieved an IoU of 0.398 and a Dice score of
0.569, which indicates a moderate overlap between the predicted and ground truth masks.
The high sensitivity (0.997) observed during validation suggests that the model is proficient
in identifying ciliary regions, albeit with a specificity of 0.882, indicating some degree of
false positives. In the testing phase, the IoU and Dice scores decreased to 0.132 and 0.233,
respectively, reflecting the challenges posed by the dyskinetic cilia data, which were not
included in the training or validation sets. Despite this, the model maintained a sensitivity
of 0.479 and specificity of 0.806.

Figure 5 provides visual examples of the model’s predictions on dyskinetic cilia samples,
alongside the manually labeled ground truth and thresholded predictions. The dyskinetic
samples were not used in the training or validation phases. These predictions were gener-
ated after only 15 epochs of training with a small training data. The visual comparison
reveals that, while the model captures the general structure of ciliary regions, there are in-
stances of under-segmentation and over-segmentation, which are more pronounced in the
dyskinetic samples. This observation is consistent with the quantitative metrics, suggesting
that further refinement of the pseudolabel generation process or model architecture could
enhance segmentation accuracy.
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Figure 5.  The model predictions on 5 dyskinetic cilia samples. The first column shows a frame of the
video, the second column shows the manually labeled ground truth, the third column is the model’s
prediction, and the last column is a thresholded version of the prediction.

4.1. Training the model using control and dyskinetic data

Since dyskinetic videos contain cilia that show some degree of movement we generated
pseudo-labels for 283 dyskinetic videos and used them along with the 76 control videos from
the previous experiment in another experiment. Training the model again for 15 epochs
over healthy and dyskinetic videos exhibited a loss of performance in the validation phase,
however, in the testing phase all of the metrics improved except for the specificity. Since
in this experiment the model was trained on an additional subset of the dyskinetic videos,
improved performance in detecting and masking dyskinetic ciliary regions is expected. The
results are depicted in Table 3.

After using the model to infer more samples we detected a pattern for how the model
performs in regions with specific visual properties. We observed that the model can more
successfully and more accurately detect ciliary regions in images where they appear sharp

Table 2.  The performance of the model in validation and testing phases after 15 epochs of training.

Phases Metrics

IoU over dataset Dice Score Sensitivity Specificity

Validation 0.398 0.569 0.997 0.882

Testing 0.132 0.233 0.479 0.806
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Table 3.  The performance of the model after retraining with an addition of 283 videos of dyskinetic cilia
to the training dataset.

Phases Metrics

IoU over dataset Dice Score Sensitivity Specificity

Validation 0.202 0.337 0.999 0.765

Testing 0.139 0.245 0.732 0.696

and in focus, and do not overlap other cellular structures. On the other hand, as shown in all
samples in Figure 5, the most number of false negatives occur where the ciliary regions are
in close proximity to other cellular structures or overlapping them. Furthermore, the most
false positives occur along sharp cellular borders. Cell borders are most where cilia can be
found the most in the videos, and the model may have learnt to look for or prioritize sharp
cell borders and boundaries as ciliary regions. More investigation is required to further
examine whether the model’s attention mechanism or feature extraction layers are overly
biased towards sharp edges and boundaries, potentially leading to incorrect predictions.
This investigation could involve analyzing the model’s learned features, adjusting training
strategies, or incorporating additional data augmentation techniques to improve its perfor-
mance in complex regions.

The results show the potential of our approach to reduce the reliance on manually labeled
data for cilia segmentation. The use of this unsupervised learning framework allows the
model to generalize from the motile cilia domain to the more variable dyskinetic cilia,
although with some limitations in accuracy. Future work could focus on expanding the
dataset and improving the process of generating pseudolabels to enhance the model’s
accuracy.

5. Conclusions
In this paper, we introduced a self-supervised framework for cilia segmentation that
eliminates the need for expert-labeled ground truth segmentation masks. Our approach
takes advantage of the inherent visual similarities between healthy and unhealthy cilia to
generate pseudolabels from optical flow-based motion segmentation of motile cilia. These
pseudolabels are then used as ground truth for training a semi-supervised neural network
capable of identifying regions containing dyskinetic cilia. Our results indicate that the self-
supervised framework is a promising step towards automated cilia analysis. The model’s
ability to generalize from motile to dyskinetic cilia demonstrates its potential applicability
in clinical settings. Although there are areas for improvement, such as enhancing segmen-
tation accuracy and expanding the dataset, the framework sets the foundation for more
efficient and reliable cilia analysis pipelines.
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Abstract

Feature selection is crucial for reducing data dimensionality as well as enhancing model
interpretability and performance in machine learning tasks. However, selecting the most
informative features in large dataset often incurs high computational costs. This study
explores the possibility of performing feature selection on a subset of data to reduce the
computational burden. The study uses five real-life datasets with substantial sample sizes
and severe class imbalance ratios between 0.09 – 0.18. The results illustrate the variability
of feature importance with smaller sample fractions in different models. In this cases con-
sidered, light gradient-boosting machine exhibited the least variability, even with reduced
sample fractions, while also incurring the least computational resource.

Keywords feature selection, class imbalance, machine learning

1. Introduction
In the development of prediction models for real-world applications, two key challenges
often arise: high-dimensionality resulting from the numerous features, and class-imbalance
due to the rarity of samples in the positive class. Feature selection methods are utilized to
address issues of high-dimensionality by selecting a smaller subset of relevant features, thus
reducing noise, increasing interpretability, and enhancing model performance [1], [2], [3].

Studies [4], [5], [6], [7] on the performance of feature selection methods with class imbal-
ance data have been undertaken on using synthetic and real-life datasets. A significant
drawback noted was the computational cost of their approach on large sample sizes. While
experimental investigations of feature selection amid class imbalance conditions have been
studied in the literature, there is a need to further understand the effect of sample size on
performance degradation of feature selection methods. This would offer valuable insights
into tackling the associated resource expense involved in undertaking feature selection
with respect to large sample sizes where class-imbalance exists, for a wide range of appli-
cations.

This study investigates the impact of performing feature selection on a reduced dataset
on feature importance and model performance, using five real-life datasets characterised
by large sample sizes and severe class imbalance structures. We employ a feature selec-
tion process that utilises permutation feature importance (PFI) and evaluate the feature
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importance on three selected models; namely light gradient-boosting machine (Light GBM),
random forest (RF) and support vector machines (SVM). These models are popular in real-
world machine learning (ML) studies and also serve as a benchmark for comparing novel
models [8], [9], [10], [11], [12]. Feature importance was evaluated using the area under the
Receiver Operator Characteristics (ROC) curve, commonly referred to as AUC owing to its
suitability in class imbalance problems [13], [14]. The development of the ML framework
and data visualisation in this study was facilitated by several key Python libraries. Pandas
[15] and NumPy [16] were used for data loading and numerical computations, respectively.
Scikit-learn [17] provided tools for data preprocessing, model development, and evaluation.
Matplotlib [18] was employed for visualising data structures. Additionally, the SciPy [19]
library’s cluster, spatial, and stats modules were crucial for hierarchical clustering, Spear-
man rank correlation, and distance matrix computations.

The rest of the paper is organised as follows: Section 2 briefly outlines the methodology
adopted, while Section 3 presents the results and discussion. The conclusion of the study is
provided in Section 4.

2. Methodology

2.1. Description of datasets

Five real-life datasets from different subject areas were considered in this study. Four of the
datasets were obtained from the UC Irvine ML repository, including CDC Diabetes Health
Indicator [20], Census Income [21], Bank Marketing [22], and Statlog (Shuttle) [23]. The fifth
dataset is Moisture Absorbed Composite [24] from a damage morphology study. The datasets
are presented in Table 1. Notably, all datasets exhibited high class imbalance ratios from
0.09 - 0.18 (i.e., the ratio of the number of samples in the minority class over that of the
majority class).

Building data-driven models in the presence of high dimensionality includes several steps
such as data preprocessing, feature selection, model training and evaluation. To address
class imbalance issues during model training, an additional resampling step may be
performed to adjust the uneven distribution of class samples [25], [26], [27]. This paper,
however, focuses on the feature selection method, model training, and the evaluation
metrics adopted.

2.2. Feature selection and model training

To maintain a model-agnostic approach that is not confined to any specific ML algorithm,
this study employed PFI for feature selection. PFI assesses how each feature affects the
model’s performance by randomly shuffling the values of a feature and noting the resulting
change in performance. In essence, if a feature is important, shuffling its values should
significantly reduce the model’s performance since the model relies on that feature to
make predictions. A positive importance score suggests that a feature is useful for the

Table 1.  Summary of datasets used in the study

Dataset Features Instances Subject Area Imbalance Ratio

Diabetes health indicator 20 253,680 Health and Medicine 0.16

Census income 14 48,842 Social Science 0.09

Bank marketing 17 45,211 Business 0.13

Statlog (shuttle) 7 58,000 Physics and Chemistry 0.18

Moisture absorbed compos-
ite

9 295,461 Mechanics of Materials 0.11
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model’s prediction as permuting the values of the feature led to a decrease in the model’s
performance. Conversely, a negative importance score suggests that a feature might be
introducing noise and the model might perform better without it. Thus, PFI interrupts the
link between a feature and its predicted outcome, enabling us determine the extent to
which a model relies on a particular feature [17], [28], [29]. It is noteworthy that the effect of
permuting one feature could be negligible when features are collinear. Hence, an important
feature may report a low score. To tackle this, a hierarchical cluster on a Spearman rank-
order correlation can be adopted, with a threshold taking from visual inspection of the
dendrograms in grouping features into clusters and selecting the feature to retain.

Datasets were loaded using pandas, and categorical features were encoded using one-
hot encoding. The Spearman correlation matrix was computed and then converted into a
distance matrix. Hierarchical clustering was subsequently performed using Ward’s linkage
method, and a threshold for grouping features into clusters was determined through
visual inspection of the dendrograms, allowing for the selection of features to retain. Subse-
quently, the investigation proceeded in two steps. In step 1, all samples of the respective
dataset was used. The dataset was split into training and test sets based on a test-size of 0.25.
The respective classifiers were initialised using their default hyper-parameter settings and
fitted on the training data. Thereafter, PFI was computed on the fitted model with number
of times a feature is permuted set to 30 repeats. Lastly, the change in AUC was evaluated on
the test set.

In the second step, we initiate three for-loops to handle the different features, fractions of
samples, and repetition of the PFI process undertaken in step 1. Sample fraction sizes were
taken from 10% – 100% in increments of 10%, with the entire process randomly repeated
10 times. This provided an array of 300 AUC scores for each sample fraction and respective
feature of the PFI process. To ensure reproducibility, the random state for the classifiers,
sample fractions, data split, and permutation importance were predefined. Computation
processes were accelerated using the joblib parallel library on the Sulis High Performance
Computing platform. A sample source code of step 2 is presented:

# Define the function for parallel execution
def process_feature(f_no, selected_features, df):
    for frac in np.round(np.arange(0.1, 1.1, 0.1), 1).tolist():  #loop for sample fractions
        for rand in range(10): #loop for 10 repeats of the process
            df_new = df.sample(frac=frac, random_state=rand)
...
            pfi = permutation_importance(model, X_val, y_val, n_repeats=30,
                                       random_state=rand, scoring='roc_auc', n_jobs=-1)
    return final_df
# Parallelise computation
results = Parallel(n_jobs=-1)(delayed(process_feature)(f_no, selected_features, df) for f_no in
range(len(selected_features)))

3. Results and Discussions
The hierarchical cluster and Spearman’s ranking for moisture absorbed composite dataset
is shown in Figure 1 and Figure 1 respectively (Frequency Centroid – FC, Peak Frequency
– PF, Rise Time – RT, Initiation Frequency – IF, Average Signal Level – ASL, Duration – D,
Counts – C, Amplitude – A and Absolute Energy – AE). Based on the visual inspection of
the hierarchical cluster, a threshold of 0.8 was selected, thus, retaining features RT, C, ASL,
and FC.

As observed in Figure 1, Frequency Centroid and Peak Frequency are in the same cluster
with a highly correlated value of 0.957 shown in Figure 1. Similarly, Rise Time and Initia-
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Figure 1.  Feature relationship for moisture absorbed composite dataset; (a) hierarchical cluster, (b)
Spearman correlation ranking.

tion Frequency are clustered with a highly negative correlation of −0.862. Amplitude and
Absolute Energy also exhibited a high positive correlation of 0.981.

Table 2 gives the median and interquartile (IQR) feature importance scores based on change
in AUC for the LightGBM, RF and SVM models. These scores were obtained using all samples
in the PFI process. Values emphasised in bold fonts represent the highest ranked feature
for the respective models based on their median change in AUC.

From Table 2, SVM tended to be have very low scores in some datasets, possibly due to
its reliance of support vectors in determining the decision boundaries. Thus, features with
strong influence at the decision boundary but not directly affecting the support vectors may
seem less important. For the Moisture Absorbed Composite dataset, the three classifiers
reported similar scores for Frequency Centroid of 0.468, 0.466 and 0.422 respectively in
Table 2.

However, in Bank Marketing dataset, LightGBM and RF identified Feature 1 as a relatively
important feature, while SVM considered it insignificant. The mutability of importance
scores for the classifiers considered underscores the need to explore multiple classifiers
when undertaking a comprehensive investigation of feature importance for feature selec-
tion purposes.

Figure 2 shows the PFI process time and corresponding sample fractions for the Diabetes
dataset, which has a substantial sample size of 253,680 instances. The results are based on
one independent run, with PFI set at 30 feature-permuted repeats. For LightGBM and RF, the
PFI process time increased linearly with larger sample fractions, whereas SVM experienced
an exponential growth. LightGBM had the lowest computational cost, with CPU process
times of 3.9 seconds and 28.8 seconds for 10% and 100% sample fractions, respectively.
SVM required 21,263 seconds to process the entire dataset, reflecting a 9,345% increase in
CPU computational cost compared to using a 10% sample fraction. SVM’s poor performance
relative to LightGBM and RF is likely due to its poor CPU parallelisability.

Figure 3a - Figure 3c present the PFI for Final Weight feature of Census Income dataset,
evaluated across different sample fractions using LightGBM, RF, and SVM models, respec-
tively. The change in AUC indicates the impact on model performance when Final Weight
feature is permuted. Generally, for smaller sample fractions, there was a higher variability
in AUC and prominence of outliers. This could be attributed to the increased influence
of randomness, fewer data points, and sampling fluctuations for smaller sample fractions
across the datasets.
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Table 2.  Median and IQR feature importance scores based on change in AUC for LightGBM, RF and SVM models, (values in bold fonts represent
the highest ranked feature for the respective models).

Census Income Bank Marketing

ID Feature LightGBM RF SVM ID Feature LightGBM RF SVM

Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR

25th 75th 25th 75th 25th 75th 25th 75th 25th 75th 25th 75th

0 Age 0.117 0.114 0.121 0.066 0.061 0.069 < 10⁻³ < 10⁻³ < 10⁻³ 0 Age 0.016 0.015 0.017 0.026 0.024 0.027 −0.001 −0.001 0.002

1 Final
weight

−0.002 −0.003 −0.001 < 10⁻³ −0.003 0.004 0.003 < 10⁻³ 0.011 1 Bal-
ance

0.013 0.011 0.014 0.011 0.009 0.012 0.026 0.021 0.027

2 Educa-
tion-
num

0.085 0.080 0.087 0.063 0.061 0.068 < 10⁻³ < 10⁻³ < 10⁻³ 2 Day of
week

0.012 0.011 0.013 0.014 0.014 0.016 0.001 0.001> 0.001

3 Capital-
gain

0.049 0.048 0.052 0.047 0.046 0.050 0.029 0.026 0.030 3 Dura-
tion

0.256 0.253 0.261 0.211 0.209 0.215 0.154 0.148 0.157

4 Work-
class

< 10⁻³ < 10⁻³ 0.001 0.003 0.001 0.004 < 10⁻³ < 10⁻³ < 10⁻³ 4 PDays 0.051 0.051 0.052 0.054 0.052 0.055 0.053 0.050 0.055

5 Race < 10⁻³ < 10⁻³ < 10⁻³ 0.001 0.001 0.002 < 10⁻³ < 10⁻³ < 10⁻³ 5 Job_b 0.003 0.003 0.004 0.002 0.001 0.002 < 10⁻³ < 10⁻³ < 10⁻³

6 Job_m < 10⁻³ < 10⁻³ 0.001 0.001 0.001 0.002 < 10⁻³ < 10⁻³ < 10⁻³

7 Hous-
ing

0.026 0.025 0.027 0.032 0.031 0.034 0.001 0.001 0.001

Statlog (Shuttle) Diabetes

0 Rad
Flow

0.355 0.350 0.360 0.387 0.383 0.389 0.253 0.249 0.259 0 HighBP 0.128 0.127 0.129 0.128 0.128 0.130 0.066 0.065 0.067

1 Fpv
Close

0.005 0.005 0.005 0.012 0.011 0.013 < 10⁻³ < 10⁻³ 0.001 1 CholCheck 0.009 0.009 0.010 0.011 0.010 0.011 −0.001 −0.001 −0.001

2 Fpv
Open

0.241 0.239 0.244 0.274 0.270 0.277 0.319 0.316 0.322 2 BMI 0.080 0.078 0.081 0.079 0.077 0.080 −0.073 −0.074 −0.072

3 Smoker 0.004 0.004 0.005 0.004 0.004 0.005 0.026 0.025 0.027

Moisture Absorbed Composites

0 Rise-
time

0.005 0.005 0.005 0.009 0.008 0.009 0.004 0.003 0.004

1 Counts 0.037 0.037 0.037 0.075 0.073 0.075 0.009 0.009 0.009

2 ASL 0.034 0.034 0.034 0.072 0.071 0.073 < 10⁻³ < 10⁻³ < 10⁻³

3 Freq.
Cen-
troid

0.468 0.466 0.470 0.463 0.461 0.465 0.422 0.421 0.425

For LightGBM model in Figure 3a, the median change in AUC was close to zero, indicating
that Final Weight had minimal impact on model performance, as noted in Table 2. Similar
results were recorded in Figure 4a - Figure 4c for the Duration feature of Bank Marketing
dataset, where all models exhibited similarly high feature importance scores. Even for
sample fractions of 0.5, LightGBM and RF appeared to give similar importance scores to
using the entire data sample. On the other hand, SVM exhibited a higher median change in
AUC, indicating that the Final Weight feature had a more significant impact on its perfor-
mance. Additionally, SVM showed the greatest variability and the most prominent outliers,
particularly at lower sample fractions. This was noticeable in Figure 5a - Figure 5c, where
all classifiers reported similar importance scores as noted in Table 2. This variability and
the presence of outliers suggest that the model’s performance is less stable when features
are permuted.

PFI can provide insights into the importance of features, but it is susceptible to variability,
especially with smaller sample sizes. Thus, complementary feature selection methods could
be explored to validate feature importance. Future work could investigate the variability
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(a) (b) (c)
Figure 3.  Sample fractions and corresponding change in AUC for Final Weight feature of Census Income dataset; (a) LightGBM, (b) RF, and
(c) SVM.

(a) (b) (c)
Figure 4.  Sample fractions and corresponding change in AUC for Duration feature of Bank Marketing dataset; (a) LightGBM, (b) RF, and
(c) SVM.

of features under particular models and sample sizes, with a view to evolving methods of
providing a more stable information to the models.

4. Conclusion
Feature selection for large datasets incurs considerable computational cost in the model
development process of various ML tasks. This study undertakes a preliminary investiga-

Figure 2.  PFI process time and corresponding sample fractions for the Diabetes dataset.
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(a) (b) (c)
Figure 5.  Sample fractions and corresponding change in AUC for Rad Flow feature of Statlog (Shuttle) dataset; (a) LightGBM, (b) RF, and
(c) SVM.

tion into the influence of sample fractions on feature importance and model performance
in datasets characterised by class imbalance. Five real-life datasets with large sample sizes
from different subject fields which exhibited high class imbalance ratios of 0.09 – 0.18 were
utilised.

Due to its model-agnostic nature, PFI was adopted for feature selection process with feature
importance evaluated on Light GBM, RF and SVM. The models were chosen due to their
widespread use in real-world ML studies and their role as benchmarks for comparing new
models. Cluster, spatial, and stats sub-packages of SciPy were instrumental in tackling the
multicollinearity effects associated with PFI. Using a PFI approach, the study revealed the
variability of feature importance with smaller sample fractions in LightGBM, random forest
and SVM models. In the cases explored, LightGBM showed the lowest variability, while SVM
exhibited the highest variability in feature importance. Also, Light GBM had the least CPU
process time across the cases considered, while SVM showed the highest computational cost.

In future work, this investigation would be expanded to substantially larger datasets and
introduce some quantitative measure of the variability of various models and feature selec-
tion methods. An understanding of the variability of feature importance can inform feature
engineering efforts that provides means of alleviating the variability of feature importance
in samples fractions under class imbalance conditions.
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Abstract

The rapid pace of discovering asteroids due to advancements in detection techniques
outpaces current abilities to analyze them comprehensively. Understanding an asteroid’s
physical properties is crucial for effective deflection strategies and improves our understand-
ing of the solar system’s formation and evolution. Dense photometry provides continuous
time-series measurements valuable for determining an asteroid’s rotation period, yet is
limited to a singular phase angle. Conversely, sparse photometry offers non-continuous
measurements across multiple phase angles, essential for determining an asteroid’s absolute
magnitude, albedo (reflectivity), and size. This paper presents open-source algorithms that
integrate dense photometry from citizen scientists with sparse photometry from space
and ground-based all-sky surveys to determine asteroids’ albedo, size, rotation, strength,
and composition. Applying the algorithms to the Didymos binary asteroid, combined with
data from GAIA, the Zwicky Transient Facility, and ATLAS photometric sky surveys, revealed
Didymos to be 840 meters wide, with a 0.14 albedo, an 18.14 absolute magnitude, a 2.26-hour
rotation period, rubble-pile strength, and an S-type composition. Didymos was the target of
the 2022 NASA Double Asteroid Redirection Test (DART) mission. The algorithm successfully
measured a 35-minute decrease in the mutual orbital period following the DART mission,
equating to a 40-meter reduction in the mutual orbital radius, proving a successful deflection.
Analysis of the broader asteroid population highlighted significant compositional diversity,
with a predominance of carbonaceous (C-type) asteroids in the outer regions of the asteroid
belt and siliceous (S-type) and metallic (M-type) asteroids more common in the inner regions.
These findings provide insights into the diversity and distribution of asteroid compositions,
reflecting the conditions and processes of the early solar system. This work empowers citizen
scientists to become planetary defenders, contributing significantly to planetary defense and
enhancing our understanding of solar system composition and evolution.

Keywords Near-Earth Asteroids, Python Algorithms, Open Data, Citizen Scientists,
Asteroid Characterization

1. Introduction

1.1. Background

There are over 1.3 million known asteroids, and advanced detection techniques lead to the
discovery of hundreds of new near-Earth and main-belt asteroids every month. Studying
these asteroids provides valuable insights into the early solar system’s formation and
evolution. Phase curves, which illustrate the change in an asteroid’s brightness as its phase
angle (the angle between the observer, asteroid, and Sun) changes, are essential for asteroid
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characterization. Understanding near-Earth asteroids is crucial because it allows for the
development of effective deflection strategies, which are vital for preventing potential
collisions with Earth and safeguarding our planet from catastrophic impacts.

1.2. Research Problem

Despite advancements in detection techniques, the need for observations spanning multi-
ple years, limited telescope availability, and narrow observation windows hinder detailed
characterization of asteroids. To date, phase curves have been generated for only a few
thousand asteroids. This slow pace of analysis hinders our planetary defense capabilities
for deflecting potentially hazardous asteroids and limits our understanding of the solar
system’s evolution.

1.3. Related Work

Recent efforts in the field have focused on various approaches to combine dense and sparse
photometric datasets. For instance, the Pan-STARRS survey has used sparse photometry
to estimate the absolute magnitudes and rotation periods of asteroids, while the Asteroid
Terrestrial-impact Last Alert System (ATLAS) provides sparse photometry data for many
asteroids observed across different phase angles. Studies by V. G. Shevchenko, E. F. Tedesco,
L. O. Kovalchuk, A. M. Fiacconi, and V. A. Zubarev [1] have explored methods to derive phase
integrals and geometric albedos from sparse data. On the dense photometry side, projects
like the Zwicky Transient Facility (ZTF) and Gaia Data Release 3 (DR3) have contributed
extensive datasets valuable for continuous observations of asteroid brightness variations.
However, these efforts often face challenges in data integration due to differing observa-
tional cadences, filters, and coverage.

1.4. Research Objectives

This paper presents an innovative methodology, PhAst, developed using Python algorithms
to combine dense photometry from citizen scientists with sparse photometry from space
and ground-based all-sky surveys to determine key physical characteristics of asteroids. The
specific objectives of this research are to:

1. Develop Python algorithms to integrate serendipitous asteroid observations with
citizen-contributed and open datasets.

2. Apply these algorithms to planetary defense tests, such as NASA’s DART mission.
3. Characterize large populations of asteroids to infer compositional diversity in our

solar system.

1.5. Significance of the Study

This study offers significant contributions to the field of asteroid characterization and plan-
etary defense. By integrating dense and sparse photometry, the PhAst algorithm provides
a comprehensive method for determining the physical properties of asteroids. The open-
source nature of the algorithm encourages collaboration and improvements from a global
community of researchers and citizen scientists, enhancing its robustness and accelerating
advancements in the field. Furthermore, the study empowers citizen scientists to actively
participate in planetary defense, contributing valuable data and insights that enhance our
understanding and preparedness for potential asteroid impacts.

1.6. Application in Planetary Defense: NASA’s DART Mission

The NASA Double Asteroid Redirection Test (DART) mission was designed to test and
validate methods to protect Earth from hazardous asteroid impacts by demonstrating the
kinetic impactor technique. It involved sending a spacecraft to collide with an asteroid to
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change its trajectory. PhAst provides a detailed pre- and post-impact analysis of the target
asteroid, Didymos, and its moonlet, Dimorphos.

2. Methodology

2.1. Overview

The PhAst algorithm integrates dense and sparse photometry data to determine the physical
properties of asteroids. Dense photometry provides continuous time-series measurements,
crucial for determining rotation periods, while sparse photometry offers non-continuous
measurements across multiple phase angles, essential for absolute magnitude and size
determination. Integrating both methods can overcome their individual limitations.

2.2. Development of Novel Open-Source PhAst

PhAst integrates several years of sparse photometry from serendipitous asteroid obser-
vations with dense photometry from professional and citizen scientists Figure  1. The
algorithm effectively combines continuous light data (dense photometry) and infrequent
light data (sparse photometry) by creating phase curves whose linear components yield the
asteroid’s geometric albedo and composition, while the non-linear brightness surge at small
angles determines the absolute magnitude. This methodology allows for the creation of
folded light curves to measure the asteroid’s rotation period and, for binary asteroids, their
mutual orbital period. Being open-source, the PhAst algorithm allows for collaboration and
improvements from a global community of researchers and citizen scientists, enhancing its
robustness and accelerating advancements in asteroid characterization.

2.3. Data Sources and Integration

1. Primary Asteroid Observations Using Robotic Telescopes: Observation proposals
were submitted to Alnitak Observatory, American Association of Variable Star Ob-
servers, Burke Gaffney Observatory, and Faulkes Telescope.

2. Citizen Scientist Observations: Observations submitted by backyard astronomers
from locations such as Chile and the USA.

3. Serendipitous Asteroid Observations in Sky Surveys: Data from European Space
Agency Gaia Data Release 3 and Zwicky Transient Facility (ZTF) Survey.

4. Secondary Asteroid Databases: Data from the Asteroid Lightcurve Database (AL-
CDEF) ALCDEF [2] and Asteroid Photometric Data Catalog (PDS) 3rd update.

Figure 1.  Flowchart Showing Data Integration Process of PhAst
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For searching asteroids in the ZTF dataset, the FINKS portal was utilized, which allowed
searching asteroids by their Minor Planet Center (MPC) number. Similarly, asteroids in the
GAIA dataset were searched using the Solar System Objects database of Gaia DR3.

2.4. Observational Process

1. Identify Known Stars and Asteroids: Using the GAIA Star Catalog and HORIZONS
Asteroid Catalog, known stars and asteroids are identified and centroided in images.
This step ensures that the exact positions of celestial objects are accurately deter-
mined, which is crucial for subsequent analysis.

2. Determine Optimal Aperture Size: Differential photometry is used to calculate the
asteroid’s instrumental magnitude by determining the optimal aperture size that
balances brightness measurement and noise. Too small an aperture may not capture
the full brightness of the asteroid, while too large an aperture may include excessive
background noise.

3. Select Suitable Comparison Stars: Comparison stars with stable brightness are
selected to remove the effects of seeing conditions and determine the asteroid’s
computed magnitude. This step is important to ensure that variations in observed
brightness are due to the asteroid itself and not due to atmospheric conditions or
instrumental errors.

4. Remove Distance Effects: Effects of the asteroid’s changing distance from the Sun
and the observer are removed to find the reduced magnitude. This normalization
allows for a more accurate comparison of observations taken at different times and
distances.

5. Generate Phase Curves: Phase angle effects are removed to generate phase curves,
which help find the absolute magnitude and linear slope. These phase curves provide
insights into the reflectivity and surface properties of the asteroid.

6. Determine Rotation and Orbital Periods: Composite light curves are used to find
the asteroid’s rotation period and, for binary asteroids, the mutual orbital period.
This analysis reveals the dynamic characteristics of the asteroid, including its spin
state and orbital interactions with companion bodies.

2.5. Python Tools and Libraries

The development and implementation of PhAst heavily relied on various Python tools and
libraries:

• Python: The primary programming language used for developing PhAst.
• NumPy: Used for numerical computations and handling large datasets efficiently.
• Matplotlib: Utilized for plotting phase curves and light curves, visualizing the data,

and generating graphs for analysis.
• AstroPy: Employed for astronomical calculations and handling astronomical data,

such as coordinate transformations and time conversions.

3. Case Study: Didymos Binary Asteroid

3.1. Initial Observations

The Didymos binary asteroid, targeted by NASA’s 2022 Double Asteroid Redirection Test
(DART) mission, was selected for a detailed case study. Initial observations determined
Didymos to be 840 meters wide, with a 0.14 albedo, an 18.14 absolute magnitude (a measure
of its intrinsic brightness), a 2.26-hour rotation period, rubble-pile strength (indicating it is
a loose collection of rocks held together by gravity), and an S-type composition (indicating
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it is made of stony or siliceous minerals). These properties were derived by applying the
PhAst algorithm to a combination of dense and sparse photometric data.

3.2. Impact Analysis

PhAst successfully measured a 35-minute decrease in the mutual orbital period following
the DART mission’s impact. External sources validated these findings, demonstrating the
algorithm’s accuracy and reliability. The change in the mutual orbital period provided
critical data on the effectiveness of the DART mission in altering the asteroid’s trajectory, a
key goal of planetary defense strategies.

4. Results
PhAst was used to generate phase curves for over 2100 asteroids in 100 hours on a home
computer, including data-retrieval time. The physical properties of various target asteroids
of space missions and understudied asteroids were determined, including targets of the
NASA LUCY Mission, UAE Mission, binary asteroids, and understudied asteroids Figure 2.
The rapid analysis capability highlights PhAst’s potential for large-scale asteroid character-
ization, enabling detailed studies of large populations of asteroids in a relatively short time.

4.1. Determining Physical Properties of Target Asteroids of Space Missions and
Understudied Asteroids

PhAst was used to generate phase curves and determine the physical properties of various
target asteroids of space missions and understudied asteroids. The results include:

4.1.1. NASA LUCY Mission Targets:

The NASA LUCY mission aims to explore Trojan asteroids, which share Jupiter’s orbit
around the Sun. Understanding these asteroids can provide insights into the early solar
system since Trojans are considered remnants of the primordial material that formed the
outer planets.

3548 Eurybates Absolute Magnitude (H) = 9.75 ± 0.05Slope Parameter (G) = 0.11Albedo =
0.05Relevance: Eurybates is the largest and presumably the most ancient member of
the Eurybates family, offering a window into the conditions of the early solar system.

Figure 2.  Physical Properties of Target Asteroids of Space Missions and Understudied Asteroids Deter-
mined
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10253 Westerwald Absolute Magnitude (H) = 15.33 ± 0.05Slope Parameter (G) = 0.17Albedo
= 0.21Relevance: Westerwald’s high albedo suggests it might be a fragment from a larger
parent body, providing clues about collisional processes in the early solar system.

4.1.2. UAE Mission Targets:

The UAE space mission to explore asteroids aims to study their composition, structure, and
history, contributing to our understanding of asteroid formation and the evolution of the
solar system.

269 Justitia Absolute Magnitude (H) = 9.93 ± 0.09Slope Parameter (G) = 0.11Albedo =
0.09Relevance: Justitia’s relatively low albedo indicates a carbonaceous composition,
which can help researchers understand the distribution of organic materials in the
solar system.

15094 Polymele Absolute Magnitude (H) = 11.69 ± 0.07Slope Parameter (G) = 0.18Albedo =
0.05Relevance: Polymele’s properties suggest it is a primitive body, providing valuable
information about the early solar system’s building blocks.

4.1.3. Binary Asteroids:

Understanding binary asteroids, where two asteroids orbit each other, can offer insights
into the formation and evolutionary history of these systems. The mutual orbital period and
other physical properties provide data on their dynamics and interactions.

3378 Susanvictoria Absolute Magnitude (H) = 13.83 ± 0.05Slope Parameter (G) =
0.27Albedo = 0.19Relevance: Studying binary systems like Susanvictoria helps in
understanding the processes that lead to the formation of binary asteroids and their
subsequent evolution.

2825 Crosby Absolute Magnitude (H) = 13.33 ± 0.06Slope Parameter (G) = 0.11Albedo =
0.07Relevance: Crosby’s characteristics can provide insights into the collisional history
and mechanical properties of binary asteroid systems. The physical properties of the
binary asteroids were submitted to the binary asteroid working group.

4.1.4. Understudied Asteroids:

Characterizing understudied asteroids expands our knowledge of the diversity and distri-
bution of asteroid properties in the solar system.

2006 MG13 Absolute Magnitude (H) = 15.94 ± 0.08Slope Parameter (G) = 0.21Albedo =
0.19Relevance: Detailed study of asteroids like 2006 MG13 helps fill gaps in our under-
standing of the physical and compositional diversity of asteroids.

2007 AD11 Absolute Magnitude (H) = 15.76 ± 0.11Slope Parameter (G) = 0.13Albedo =
0.13Relevance: Investigating such understudied bodies contributes to a more complete
picture of asteroid population characteristics and their evolutionary paths.

5. Discussions

5.1. Determining the Success of Asteroid Deflection

The success of the DART mission was evaluated by analyzing the change in the orbital path
of Dimorphos, the moonlet of Didymos, after deflection. Applying Kepler’s Third Law, the
pre-impact orbital period of 11.91 hours and post-impact orbital period of 11.34 hours were
used to calculate an orbital radius change of 0.04 km. This change confirms the effectiveness
of the DART mission in altering the asteroid’s trajectory, a crucial component of planetary
defense.
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5.2. Determining Asteroid Strength

Asteroid strength can be inferred from the rotation period. This inference is based on the
fact that an asteroid’s structural integrity must be sufficient to withstand the centrifugal
forces generated by its rotation. If the rotation period is less than 2.2 hours, the asteroid
must be a strength-bound single rock; otherwise, it would fly apart due to centrifugal forces
exceeding the gravitational binding forces. This criterion is supported by studies such as
those by P. Pravec and A. W. Harris [3], who observed that most asteroids with rotation
periods shorter than 2.2 hours are smaller than 150 meters and are likely monolithic. For
larger asteroids, the rubble-pile structure is held together by self-gravity rather than cohe-
sive forces, making them prone to disaggregation at faster rotation rates. This information
is vital for assessing the structural integrity of asteroids and planning deflection missions.

5.3. Determining Asteroid Taxonomy

Asteroid taxonomy (chemical composition) can be determined from geometric albedo. C-
type asteroids have lower albedo, S-type and M-type asteroids have moderate albedo,
and rare E-type asteroids have the highest albedo. (S-type asteroids are made of stony or
siliceous minerals, while C-type and M-type refer to carbonaceous and metallic composi-
tions, respectively.) The taxonomic distribution provides insights into the conditions of the
early solar system based on the spatial distribution of asteroid types. Understanding these
compositions helps in determining the origins and evolutionary history of these asteroids.

5.4. Early Solar System Conditions

The taxonomical distributions of carbonaceous, siliceous, and metallic asteroids in the main
belt were compiled. Over 58% of the asteroids characterized by PhAst are carbonaceous,
showing they are the most abundant type in our Solar System. Their abundance increases
with distance from the Sun, reaching nearly 75% in the outer region of the main belt
compared to over 45% in the inner region Figure 3. This finding is consistent with previous
research in the field, such as studies by F. E. DeMeo and B. Carry [4], which indicate that
carbonaceous asteroids are prevalent in the outer asteroid belt. Characterizing asteroid
populations helps us better understand the diversity of compositions in the solar system
by providing a detailed inventory of the different types of asteroids and their distribution.
This information is crucial for several reasons:

• Formation Conditions: Different types of asteroids formed under varying conditions
in the early solar system. For example, carbonaceous (C-type) asteroids, which are
rich in organic compounds, are more prevalent in the outer regions of the asteroid
belt, suggesting formation in cooler, volatile-rich environments. In contrast, siliceous
(S-type) and metallic (M-type) asteroids are more common in the inner regions, indi-
cating formation in hotter, more metal-rich conditions.

• Evolutionary Processes: By studying the physical and chemical properties of aster-
oids, we can infer the processes that have shaped their evolution. This includes
understanding how collisions, thermal processes, and space weathering have affected
their surfaces and internal structures.

5.5. Errors and Limitations

Photometry was performed on images with a Signal-to-Noise Ratio (SNR) > 100, yielding a
measurement uncertainty of 0.01. The average error in phase curve fitting was 0.10. Limited
processing power restricted the preciseness of the best fit for rotation and mutual orbital
periods to two significant digits. These limitations highlight the need for more powerful
computational resources and more precise observational data to improve the accuracy of
asteroid characterization.
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Figure 3.  Spatial Distribution of Asteroid Types

6. Conclusions
PhAst represents a significant advancement in asteroid characterization, combining dense
and sparse photometry to yield comprehensive insights into asteroid properties. The suc-
cessful application of PhAst to the Didymos binary asteroid and over 2100 other asteroids
demonstrates its potential for large-scale use. By engaging citizen scientists, we can accel-
erate asteroid analysis and enhance our planetary defense strategies.

7. Future Work
PhAst will serve as a powerful tool for accelerating the analysis of data produced by the
Legacy Survey of Space and Time (LSST), set to begin in 2025. Over a decade, LSST aims
to observe over 5 million asteroids across various filters, generating a nightly data volume
of 20TB. The specific benefits and new opportunities that PhAst’s applications might bring
include:

Enhanced Planetary Defense By rapidly characterizing large populations of asteroids,
including potentially hazardous asteroids (PHAs), PhAst can provide detailed analysis
that are crucial for developing effective deflection strategies, thereby enhancing plan-
etary defense capabilities.

Comprehensive Asteroid Mapping The integration of dense and sparse photometry
allows for the creation of more accurate and comprehensive maps of asteroid distrib-
utions and compositions in the solar system. This can provide valuable insights into
the formation and evolution of the solar system, aiding both scientific research and
educational initiatives.

Resource Identification and Utilization PhAst’s ability to determine the physical and
compositional properties of asteroids can aid in identifying asteroids rich in valuable
minerals or water. This opens up new opportunities for asteroid mining and resource
utilization, which could support long-term space exploration and the development of
space infrastructure.

Support for Future Space Missions PhAst can be used to provide detailed pre and post
mission characterization of target asteroids for upcoming space missions including
NASA’s OSIRIS-APEX which will fly-by near-Earth asteroid Apophis on April 23, 2029,
JAXA’s Hayabusa2 SHARP to explore two asteroids, 2001 CC21 and 1998 KY26, and
China’s first kinetic impact deflection test mission would target the near-Earth asteroid
2015 XF261 with a launch in 2027.

Exoplanetary Atmosphere Characterization PhAst can be expanded to exoplanetary
atmosphere characterization by adapting its methodology to analyze the light curves
from transiting exoplanets in multiple filters. This expansion would allow researchers
to study the atmospheres of distant planets, providing insights into their composition,
climate, and potential habitability.
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Citizen Science and Public Engagement By making PhAst open-source and developing
training modules for citizen scientists, the project promotes public engagement in
scientific research. This democratization of science enables a wider community to
contribute to and benefit from cutting-edge research, fostering a culture of curiosity
and collaboration.

8. Project Impact
The PhAst algorithm has been made open-source, and training modules have been devel-
oped for citizen scientists. These modules, created using Jupyter Notebooks, are designed
for use by high school students and citizen scientists to support their engagement in
asteroid characterization and planetary defense. Training on using open data for asteroid
categorization has been provided to over 1,500 students during “Space Day” and “Asteroid
Day” events in collaboration with observatories and community organizations such as
Royal Astronomical Society of Canada. See link to Github: https://github.com/Spacegirl123/
Asteroid-Characterization-By-PhAst
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Abstract

The internet’s growth has led to a surge in text usage. Now, with public access to generative AI
models like ChatGPT/Bard, identifying the source is vital. This is crucial due to concerns about
copyright infringement and plagiarism. Moreover, it is essential to differentiate AI-generated
text to curb misinformation from AI model hallucinations.

In this paper, we explore text watermarking as a potential solution, focusing on plain ASCII
text in English. We investigate techniques including physical watermarking (e.g., UniSpaCh
by Por et al.), which modifies text to hide a binary message using Unicode Spaces, and
logical watermarking (e.g., word context by Jalil et al.), which generates a watermark key via
a defined process. While logical watermarking is difficult to break but undetectable without
prior knowledge, physical watermarks are easily detected but also easy to break.

This paper presents a unique physical watermarking technique based on word substitution
to address these challenges. The core idea is that AI models consistently produce the same
output for the same input. Initially, we replaced every i-th word (for example, every 5th word)
with a “[MASK],” a placeholder token used in natural language processing models to indicate
where a word has been removed and needs to be predicted. Then, we used a BERT model
to predict the most probable token in place of “[MASK].” The resulting text constitutes the
watermarked text. To verify, we reran the algorithm on the watermarked text and compared
the input and output for similarity.

The Python implementation of the algorithm in this paper employs models from the
HuggingFace Transformer Library, namely “bert-base-uncased” and “distilroberta-base”. The
“[MASK]” placeholder was generated by splitting the input string using the split() function
and then replacing every 5th element in the list with “[MASK]”. This modified list served as the
input text for the BERT model, where the output corresponding to each “[MASK]” was replaced
accordingly. Finally, applying the join() function to the list produces the watermarked text.

This technique tends to generate nearly invisible watermarked text, preserving its integrity
or completely changing the meaning of the text based on how similar the text is to the
training dataset of BERT. This was observed when the algorithm was run on the story of Red
Riding Hood, where its meaning was altered. However, the nature of this watermark makes
it extremely difficult to break due to the black-box nature of the AI model.

Keywords physical watermark, logical watermark, HuggingFace Transformer Library,
BERT

1. Introduction
The growth of the internet is driven by the spread of web pages, which are written in HTML
(Hyper Text Markup Language). These web pages contain large amounts of text. Almost
every webpage, in some form or another, contains text, making it a popular mode of com,
munication, whether it be blogs, posts, articles, comments, etc. Text can be represented as a
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collection of ASCII or Unicode values, where each value corresponds to a specific character.
Given the text,focused nature of the internet and tools like ChatGPT or Bard, it is crucial to
identify the source of text. This helps to manage copyright issues and distinguish between
AI,generated and human,written text, thereby preventing the spread of misinformation.
Currently, detecting AI,generated text relies on machine learning classifiers that need
frequent retraining with the latest AI,generated data. However, this method has drawbacks,
such as the rapid evolution of AI models producing increasingly human,like text. Therefore,
a more stable approach is needed, one that does not depend on the specific AI model
generating the text.

Watermarks are an identifying pattern used to trace the origin of the data. In this case, we
specifically want to focus on text watermarking (watermarking of plain text). Text water,
marking can broadly be classified into 2 types, Logical Embedding, and Physical Embedding,
which in turn can be classified further [1]. Logical Embedding involves the user generating
a watermark key by some logic from the input text. Note that this means that the input text
is not altered, and the user instead keeps the generated watermark key to identify the text.
Physical Embedding involves the user altering the input text itself to insert a message into
it, and the user instead runs an algorithm to find this message to identify the text. In this
paper, we will propose an algorithm to watermark text using BERT (Bidirectional Encoder
Representations from Transformers), a model introduced by Google, whose main purpose
is to replace a special symbol “[MASK]” with the most probable word given the context.

BERT (Bidirectional Encoder Representations from Transformers) is a pre,trained model
introduced by Google in 2018, which has revolutionized natural language processing (NLP)
[2]. “Pre,trained” means the model has already been trained on a large dataset before being
fine,tuned for specific tasks. This allows the model to learn general features and patterns
from a broad range of text data. For BERT, this pre,training involves vast amounts of text
from books, articles, and websites, enabling it to understand the intricacies of human
language. This pre,training allows BERT to be adapted quickly to various NLP tasks with
relatively small amounts of task,specific data. Traditional models read text sequentially,
either left,to,right or right,to,left. In contrast, BERT reads text in both directions simulta,
neously, providing a deeper understanding of context and meaning. This bidirectional
approach allows BERT to perform exceptionally well in various NLP tasks, including ques,
tion answering, text classification, and named entity recognition. By grasping the nuances
of language more effectively, BERT sets a new standard for accuracy and efficiency in NLP
applications [2].

At its core, BERT employs a bi,directional Transformer encoder, which helps understand
the relationships between words in a sentence. This enhances its comprehension of text by
understanding context from both directions simultaneously. BERT undergoes pre,training
through two tasks: Masked Language Modeling (MLM), where certain words in a sentence
are masked and the model predicts them based on surrounding words, and Next Sentence
Prediction (NSP), which involves determining if one sentence logically follows another. This
comprehensive training enables BERT to excel in numerous NLP applications like question
answering, text classification, and named entity recognition. Given its deep understanding
of context and semantics, BERT is highly relevant to text watermarking. Watermarking
text involves embedding identifying patterns within the text to trace its origin, which can
be critical for copyright protection and distinguishing between AI,generated and human,
written content. BERT’s sophisticated handling of language makes it ideal for embedding
watermarks in a way that is subtle yet robust, ensuring that the text remains natural while
the watermark is detectable. This capability provides a more stable and reliable method
for watermarking text, irrespective of the model generating the text, therefore offering a
concrete solution amidst the evolving landscape of AI,generated content.
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2. Related Work
In this section, we will review two text watermarking algorithms before introducing our
proposed technique. Let’s first look at the current standards for text watermarking. Text
watermarking algorithms embed unique identifiers in text to protect copyright and verify
authenticity. They are important because they help prevent unauthorized use, copying, and
distribution of text.

The first algorithm is Word Context, developed by Z. Jalil and A. M. Mirza [3]. It is a type
of logical watermarking that generates a watermark key without altering the original text
[3]. Logical watermarking involves embedding a watermark key without changing the
original text. Word Context generates a watermark key by analyzing the structure of the
text around selected keywords and creating a pattern based on word lengths [3]. In Word
Context, a keyword is selected. For example, using the keyword 'is' in the text 'Pakistan
is a developing country, with Islamabad is the capital of Pakistan. It is located in
Asia.' The lengths of the words before and after 'is' are recorded: 'Pakistan' (8) and 'a' (1),
'Islamabad' (9) and 'the' (3), 'It' (2) and 'located' (7). The watermark is then 8,1,9,3,2,7 [3].
The keyword is chosen based on its significance in the text. Word lengths are used to create
the watermark because they provide a unique pattern without altering the text, ensuring
the watermark is imperceptible [3].

The second algorithm, UniSpaCh by Kamaruddin et al. in 2018, modifies the white spaces
in text to embed a binary message directly into it [4]. Modifying white spaces changes the
spacing patterns in the text, embedding binary information. A binary message is a sequence
of bits (0s and 1s) that represents data. This method uses different types of spaces to encode
these bits [4]. UniSpaCh uses 2,bit categorization to create a binary string (e.g., '10', '01',
'00', '11'). Each pair of bits is replaced with a unique type of space (like punctuation space,
thin space). These spaces are then placed in areas like between words, sentences, and
paragraphs. This method is highly invisible but has low capacity, making it unsuitable for
embedding long messages [4]. 2,bit categorization assigns pairs of bits to specific types of
spaces. This method is considered invisible because the changes are subtle and not easily
noticeable by readers. It has low capacity because only a few bits can be embedded per
space, limiting the amount of information that can be hidden [4].

The first approach by Z. Jalil and A. M. Mirza [3] is not suitable for today’s fast,paced
generation of AI text, as it is impractical to store a logical watermark for each new text [3].
It is impractical to store a logical watermark for each text because the volume of generated
text is too high, making it difficult to manage and store all watermarks. AI text generation
has made it easier and faster to produce large amounts of text, increasing the need for
scalable watermarking solutions [3]. The second approach by Por et al. (2012) is also not
suitable because the watermark can be easily removed by reformatting the text. We need
a robust and imperceptible watermarking technique [4]. The watermark can be removed
by reformatting because changes in text layout, such as altering spaces or reformatting
paragraphs, can disrupt the embedded watermark. A robust watermarking technique can
withstand such changes and remain detectable, while an imperceptible technique ensures
the watermark is not noticeable to the reader [4].

Our proposed technique is based on a method by Lancaster (2023) for ChatGPT [5]. It
replaces every fifth word in a sequence of five consecutive words (non,overlapping 5,
gram) with a word generated using a fixed random seed. For example, in the sentence 'The
friendly robot greeted the visitors with a cheerful beep and a wave of its metal arms,' the
non,overlapping 5,grams are 'The friendly robot greeted the,' 'visitors with a cheerful
beep,' and 'and a wave of its metal.' We replace the words 'the,' 'visitors,' and 'metal'
with words generated by ChatGPT using a fixed random seed [5]. A non,overlapping 5,gram
is a sequence of five consecutive words without any overlap. Replacing every fifth word
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embeds the watermark without altering the overall meaning of the text, making it a subtle
and effective method for embedding the watermark [5].

We check the watermark using overlapping 5,grams, which overlap by four words. For
example, 'The friendly robot greeted the,' 'friendly robot greeted the visitors,' 'robot
greeted the visitors with,' etc. This method uses ChatGPT to watermark its own text, but it
requires running two ChatGPT models to ensure consistency across different outputs from
the same seed. Overlapping 5,grams are sequences of five words that overlap by four words.
Two models of ChatGPT are needed to ensure consistent watermarking across different
outputs because different models might produce different results with the same random
seed, and consistency is crucial for verifying the watermark.

We propose using BERT, a model designed to find missing words, as a better alternative
to ChatGPT. BERT is more precise and smaller. Its bidirectional nature uses more context
for word prediction, potentially leading to better results. While ChatGPT,based algorithms
are best for ChatGPT text, BERT can be used for any text, regardless of its origin. BERT is
better than ChatGPT for this purpose because it is more precise and smaller, making it more
efficient. BERT’s bidirectional nature means it uses context from both the preceding and
following words to predict a missing word, which can lead to more accurate results.

3. Proposed Model
“BERT,based watermarking is based on the 5,gram approach by Lancaster[5]. However, our
focus is on watermarking any text, regardless of its origin. This paper will use bert-base-
uncased model, which finds the most probable uncased English word to replace the [MASK]
token.

Note that a different variant of BERT can be trained on different language datasets and thus
will generate a different result and as such the unique identity to consider here is the BERT
model i.e. if the user wants a unique watermark they need to train/develop the BERT model
on their own. This paper is not concerned with the type of BERT model and is focused on
its conceptual application for watermarking. Thus for us, BERT is a black box model that
returns the most probable word given the context with the only condition being that it has
a constant temperature i.e. it does not hallucinate (produce different results for the same
input). For our purposes, you can think of the proposed algorithm as a many to one function
which is responsible for converting the input text into a subset of watermarked set.

4. Algorithm
Watermark Encoding

The above is a simple implementation of the algorithm where we are assuming

1. The only white spaces in the text are " ".
2. BERT model has infinite context.

This simplified code allows us to grasp the core of the algorithm. First, we split the input
text into a list of words using the split() function. Next, we replace every 5th word with the
string “[MASK]” which represents a special token indicating where BERT should predict a
word. For each [MASK] token, we pass the preceding words and the 4 following words to the
BERT model, assuming BERT can handle an infinite context. In reality, BERT has a limited
context, so we use up to maximum_context_size , 5 words along with the [MASK] token. The
missing_word_form_BERT() function returns the most probable word, which replaces the
[MASK] token in the list. We continue this process until all [MASK] tokens are replaced, then
convert the list of words back into a string using " ".join().
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Figure 1.  Encoding algorithm to watermark input text

The beauty of the algorithm is that if we were to run it again on the watermarked text the
output that we would get would be the same as the input thus to check if a given text is
watermarked we simply need to compare the input and output to determine if a given text
is watermarked we simply need to run the above algorithm again, but with a few changes
we will have to take in offset as a consideration as the one plagiarizing the text might insert
additional words that may lead to the text

Watermark Detection

The algorithm checks if a given text is watermarked by comparing the input and output
texts, considering possible word insertions that may offset the watermark pattern.

1. Input Text Preparation : Obtain the suspected watermarked text as input.
2. Run Watermark Detection Algorithm: Run the watermark detection algorithm on

the input text.
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3. Compare Input and Output: If the input matches the output, the text is
watermarked.If not, proceed to check with offsets.

4. Offset Consideration: Initialize an array to store match percentages for each offset:
offsets = [0, 1, 2, 3, 4].For each offset, adjust the input text by removing n % 5
words where n is the number of words added.

5. Check for Matches: For each offset, count the matches where the watermark pattern
(every 5th word replaced) aligns.

6. Store Match Percentages: Calculate the percentage of matches for each offset and
store them.

7. Statistical Analysis: Compute the highest percentage of matches (Highest Ratio).
Compute the average percentage of matches for the remaining offsets (Average
Others). Calculate the T,Statistic and P,Value to determine the statistical difference
between Highest Ratio and Average Others. The T,Statistic measures the difference
between groups, and the P,Value indicates the significance of this difference.

8. Classification: Use a pre,trained model to classify the text based on the metrics
(Highest Ratio, Average Others, T,Statistic, P,Value) as watermarked or not.

5. Implementation , Encoding module
Let’s examine a Python implementation of the proposed watermarking model. The
watermark_text module identifies every 5th word in the input string, splits them using
Python’s built,in split() function, and marks them for modification using BERT. These place,
holders are replaced with the [MASK] token. Although we use BERT here, the module can
be adapted to other AI models. We chose BERT due to its efficiency in altering individual
words. The 5th word is selected to ensure a consistent and detectable pattern. The choice
of index = 5 is because? Also is this code picked from a paper?
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import os
os.environ['HUGGINGFACEHUB_API_TOKEN'] = '<ENTER_HUGGING_FACE_API_KEY>'
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
import torch

def watermark_text(text, model_name="bert-base-uncased", offset=0):
    # Clean and split the input text
    text = " ".join(text.split())
    words = text.split()

    # Replace every fifth word with [MASK], starting from the offset
    for i in range(offset, len(words)):
        if (i + 1 - offset) % 5 == 0:
            words[i] = '[MASK]'

    # Initialize the tokenizer and model, move to GPU if available
    device = 0 if torch.cuda.is_available() else -1
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForMaskedLM.from_pretrained(model_name).to(device)

    # Initialize the fill-mask pipeline
    classifier = pipeline("fill-mask", model=model, tokenizer=tokenizer, device=device)

    # Make a copy of the words list to modify it
    watermarked_words = words.copy()

    # Process the text in chunks
    for i in range(offset, len(words), 5):
        chunk = " ".join(watermarked_words[:i+9])
        if '[MASK]' in chunk:
            try:
                tempd = classifier(chunk)
            except Exception as e:
                print(f"Error processing chunk '{chunk}': {e}")
                continue

            if tempd:
                templ = tempd[0]
                temps = templ['token_str']
                watermarked_words[i+4] = temps.split()[0]

    return " ".join(watermarked_words)

# Example usage
text = "Quantum computing is a rapidly evolving field that leverages the principles of quantum mechanics
to perform computations that are infeasible for classical computers. Unlike classical computers, which
use bits as the fundamental unit of information, quantum computers use quantum bits or qubits. Qubits
can exist in multiple states simultaneously due to the principles of superposition and entanglement,
providing a significant advantage in solving complex computational problems."
watermark_text(text, offset=0)
result = "Quantum computing is a rapidly evolving field that leverages the principles of quantum
mechanics to perform computations that are impossible for classical computers. Unlike quantum computers,
which use bits as the fundamental unit of , quantum computers use quantum bits or qubits. Qubits
can exist in multiple states simultaneously according to the principles of symmetry and entanglement,
providing a significant advantage in solving complex mathematical problems."

In the result, the module has replaced each 5th word with the most probable replacement
word selected by BERT. There will always be some words that AI would not alter. For
example the 10th word “the” and the 15th word “to”. These cannot be changed by AI without
altering the entire sentence. Further, to speed up the AI computing, we can employ GPUs in
this module as well as the Detection module.

6. Implementation , Detection Module
Now that we have our watermarked text, we need to identify potential copyright infringe,
ment. We assume this text is what a plagiarizer has access to.

For this, we create a module to check the number of word matches if the AI model with the
same offset parameter is run on the watermarked text again. The algorithm’s elegance lies
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in its consistency: if we run it again on the watermarked text, the output will match the input
because the most probable words are already present at every 5th offset. Consequently, we
get a 100% match rate with a match ratio of 1. If all the 5th words were altered, our match
rate would be 0.

Altering written text is a posibility we cannot ignore. consider a scenario where a plagia,
rizer might insert extra words, causing the input not to match the output exactly. This
means our model needs to check for watermarks not only at a specific index but also in the
surrounding words. Therefore, our model needs to check for the watermark at different
offsets (0 to 4) to account for potential word insertions.

Here is how the offset works:

• If 1 word is added at the start, the offset is 1.
• If 2 words are added, the offset is 2.
• If 3 words are added, the offset is 3.
• If 4 words are added, the offset is 4.
• If 5 words are added, the offset is 0 (since the algorithm replaces every 5th word).

In general, if ‘n’ words are added, the offset is n % 5. Since we do not know how many words
were added, we need to check all possible offsets (0, 1, 2, 3, 4).

If words are added in the middle of the text, the majority of the watermark pattern (every
5th word replaced) will still be detectable at some offset. The idea is that one offset will show
a higher number of matches compared to others, indicating a watermark.

For detection, we store the percentage of matches for each offset. There is no fixed threshold
for determining a watermark, as the choice of words affects the number of matches. For
non,watermarked text, the percentage of matches at each offset will be similar. For water,
marked text, one offset will have a significantly higher percentage of matches.

The output of “watermark_text_and_calculate_matches” module is a match ratio for offsets
0,4 acting as a seed for the next stage of detection. Below is the python code for generating
the list of match ratios.
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def watermark_text_and_calculate_matches(text, model_name="bert-base-uncased", max_offset=5):
    # Clean and split the input text
    text = " ".join(text.split())
    words = text.split()

    # Initialize the tokenizer and model, move to GPU if available
    device = 0 if torch.cuda.is_available() else -1
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForMaskedLM.from_pretrained(model_name).to(device)

    # Initialize the fill-mask pipeline
    classifier = pipeline("fill-mask", model=model, tokenizer=tokenizer, device=device)

    # Dictionary to store match ratios for each offset
    match_ratios = {}

    # Loop over each offset
    for offset in range(max_offset):
        # Replace every fifth word with [MASK], starting from the offset
        modified_words = words.copy()
        for i in range(offset, len(modified_words)):
            if (i + 1 - offset) % 5 == 0:
                modified_words[i] = '[MASK]'

        # Make a copy of the modified words list to work on
        watermarked_words = modified_words.copy()
        total_replacements = 0
        total_matches = 0

        # Process the text in chunks
        for i in range(offset, len(modified_words), 5):
            chunk = " ".join(watermarked_words[:i+9])
            if '[MASK]' in chunk:
                try:
                    tempd = classifier(chunk)
                except Exception as e:
                    print(f"Error processing chunk '{chunk}': {e}")
                    continue

                if tempd:
                    templ = tempd[0]
                    temps = templ['token_str']
                    original_word = words[i+4]
                    replaced_word = temps.split()[0]
                    watermarked_words[i+4] = replaced_word

                    # Increment total replacements and matches
                    total_replacements += 1
                    if replaced_word == original_word:
                        total_matches += 1

        # Calculate the match ratio for the current offset
        if total_replacements > 0:
            match_ratio = total_matches / total_replacements
        else:
            match_ratio = 0

        match_ratios[offset] = match_ratio

    # Return the match ratios for each offset
    return match_ratios

# Example usage
text = "Quantum computing is a rapidly evolving field that leverages the principles of quantum mechanics
to perform computations that are infeasible for classical computers. Unlike classical computers, which
use bits as the fundamental unit of information, quantum computers use quantum bits or qubits. Qubits
can exist in multiple states simultaneously due to the principles of superposition and entanglement,
providing a significant advantage in solving complex computational problems."

# Calculate match ratios
match_ratios = watermark_text_and_calculate_matches(text, max_offset=5)
# (result rounded) match_ratio = {0: 0.54, 1: 0.62, 2: 0.58, 3: 0.67, 4: 0.58}
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The final stage of detection involves determining if the match ratios are statistically signif,
icant. To determine whether the text is watermarked, we rely on a binary classification
of whether a text is watermarked. For this, we use a pre,trained model based on metrics
including Highest Ratio, Average Others, T,Statistic, and P,Value. This approach is necessary
because, as illustrated in the graphs later, there is no discernible or easily observable dif,
ference between the T,statistics and P,values of watermarked and non,watermarked texts.
Consequently, we resort to using a pre,trained model for classification, which has achieved
the highest accuracy of 94%.

The module check_significant_difference generates a list of significance.

from scipy.stats import ttest_1samp
import numpy as np

def check_significant_difference(match_ratios):
    # Extract ratios into a list
    ratios = list(match_ratios.values())

    # Find the highest ratio
    highest_ratio = max(ratios)

    # Find the average of the other ratios
    other_ratios = [r for r in ratios if r != highest_ratio]
    average_other_ratios = np.mean(other_ratios)

    # Perform a t-test to compare the highest ratio to the average of the others
    t_stat, p_value = ttest_1samp(other_ratios, highest_ratio)

    # Print the results
    print(f"Highest Match Ratio: {highest_ratio}")
    print(f"Average of Other Ratios: {average_other_ratios}")
    print(f"T-Statistic: {t_stat}")
    print(f"P-Value: {p_value}")

    # Determine if the difference is statistically significant (e.g., at the 0.05 significance level)
    if p_value < 0.05:
        print("The highest ratio is significantly different from the others.")
    else:
        print("The highest ratio is not significantly different from the others.")

    return [highest_ratio, average_other_ratios, t_stat, p_value]

# Example usage
text = "Quantum computing is a rapidly evolving field that leverages the principles of quantum mechanics
to perform computations that are infeasible for classical computers. Unlike classical computers, which
use bits as the fundamental unit of information, quantum computers use quantum bits or qubits. Qubits
can exist in multiple states simultaneously due to the principles of superposition and entanglement,
providing a significant advantage in solving complex computational problems."
match_ratios = watermark_text_and_calculate_matches(text, max_offset=5)
check_significant_difference(match_ratios)

The module randomly_add_words was created to simulate the scenario where additional
words have been added to the watermarked test for testing purposes.
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import random

def randomly_add_words(text, words_to_add, num_words_to_add):
    # Clean and split the input text
    text = " ".join(text.split())
    words = text.split()

    # Insert words randomly into the text
    for _ in range(num_words_to_add):
        # Choose a random position to insert the word
        position = random.randint(0, len(words))
        # Choose a random word to insert
        word_to_insert = random.choice(words_to_add)
        # Insert the word at the random position
        words.insert(position, word_to_insert)

    # Join the list back into a string and return the modified text
    modified_text = " ".join(words)
    return modified_text

# Example usage
text = "Quantum computing is a rapidly evolving field that leverages the principles of quantum mechanics
to perform computations that are infeasible for classical computers. Unlike classical computers, which
use bits as the fundamental unit of information, quantum computers use quantum bits or qubits. Qubits
can exist in multiple states simultaneously due to the principles of superposition and entanglement,
providing a significant advantage in solving complex computational problems."
words_to_add = ["example", "test", "random", "insert"]
num_words_to_add = 5

# modified_text = randomly_add_words(text, words_to_add, num_words_to_add)
modified_text = randomly_add_words(watermark_text(text, offset=0), words_to_add, num_words_to_add)
(result) modified_text = "Quantum computing is example a rapidly evolving field that leverages the
principles of quantum mechanics to perform random computations that are impossible for classical
computers. Unlike quantum computers, which use bits as the random insert fundamental unit of , quantum
computers use quantum bits or qubits. Qubits can exist in multiple states simultaneously according
random to the principles of symmetry and entanglement, providing a significant advantage in solving
complex mathematical problems."

match_ratios = watermark_text_and_calculate_matches(modified_text, max_offset=5)
# (result rounded) match_ratios = {0: 0.57, 1: 0.57, 2: 0.54, 3: 0.38, 4: 0.77}

check_significant_difference(match_ratios)
# (result rounded)
#    Highest Match Ratio: 0.77
#    Average of Other Ratios: 0.52
#    T-Statistic: -5.66
#    P-Value: 0.01
# The highest ratio is significantly different from the others.

Once the list of significance is defined, to show the significance of using a pre,trained model,
lets plot them to futher understand the statistical summary. Here is the python code used
to generate the plots.
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import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import ttest_ind
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix

# Assuming list_of_significance and list_of_significance_watermarked are already defined
# Create DataFrames from the lists
df_significance = pd.DataFrame(list_of_significance, columns=['Highest Ratio', 'Average Others', 'T-
Statistic', 'P-Value'])
df_significance_watermarked = pd.DataFrame(list_of_significance_watermarked, columns=['Highest Ratio',
'Average Others', 'T-Statistic', 'P-Value'])

# Add a label column to distinguish between the two sets
df_significance['Label'] = 'Original'
df_significance_watermarked['Label'] = 'Watermarked'

# Combine the DataFrames
combined_df = pd.concat([df_significance, df_significance_watermarked], ignore_index=True)

# Perform EDA
def perform_eda(df):
    # Display the first few rows of the DataFrame
    print("First few rows of the DataFrame:")
    print(df.head())

    # Display statistical summary
    print("\nStatistical Summary:")
    print(df.describe())

    # Check for missing values
    print("\nMissing Values:")
    print(df.isnull().sum())

    # Visualize the distributions of the features
    plt.figure(figsize=(12, 8))
    sns.histplot(data=df, x='Highest Ratio', hue='Label', element='step', kde=True)
    plt.title('Distribution of Highest Ratio')
    plt.show()

    plt.figure(figsize=(12, 8))
    sns.histplot(data=df, x='Average Others', hue='Label', element='step', kde=True)
    plt.title('Distribution of Average Others')
    plt.show()

    plt.figure(figsize=(12, 8))
    sns.histplot(data=df, x='T-Statistic', hue='Label', element='step', kde=True)
    plt.title('Distribution of T-Statistic')
    plt.show()

    plt.figure(figsize=(12, 8))
    sns.histplot(data=df, x='P-Value', hue='Label', element='step', kde=True)
    plt.title('Distribution of P-Value')
    plt.show()

    # Pairplot to see relationships
    sns.pairplot(df, hue='Label')
    plt.show()

    # Correlation matrix
    plt.figure(figsize=(10, 8))
    sns.heatmap(df.drop(columns=['Label']).corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Matrix')
    plt.show()

    # T-test to check for significant differences
    original = df[df['Label'] == 'Original']
    watermarked = df[df['Label'] == 'Watermarked']

    for column in ['Highest Ratio', 'Average Others', 'T-Statistic', 'P-Value']:
        t_stat, p_value = ttest_ind(original[column], watermarked[column])
        print(f"T-test for {column}: T-Statistic = {t_stat}, P-Value = {p_value}")
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# Perform EDA on the combined DataFrame
perform_eda(combined_df)

# Check if the data is ready for machine learning classification

# Prepare the data
X = combined_df.drop(columns=['Label'])
y = combined_df['Label']

# Convert labels to numerical values for ML model
y = y.map({'Original': 0, 'Watermarked': 1})

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train a RandomForestClassifier
clf = RandomForestClassifier(random_state=42)
clf.fit(X_train, y_train)

# Make predictions
y_pred = clf.predict(X_test)

# Evaluate the model
print("\nClassification Report:")
print(classification_report(y_test, y_pred))

print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))

# Feature importances
feature_importances = clf.feature_importances_

# Create a DataFrame for feature importances
feature_importances_df = pd.DataFrame({
    'Feature': X.columns,
    'Importance': feature_importances
}).sort_values(by='Importance', ascending=False)

# Plot feature importances
plt.figure(figsize=(12, 8))
sns.barplot(x='Importance', y='Feature', data=feature_importances_df, palette='viridis')
plt.title('Feature Importances')
plt.show()

# Heatmap for feature importances
plt.figure(figsize=(10, 8))
sns.heatmap(feature_importances_df.set_index('Feature').T, annot=True, cmap='viridis')
plt.title('Heatmap of Feature Importances')
plt.show()

The plots are created using the result from our previous example with
check_significant_difference returned: Highest Match Ratio: 0.7692307692307693 Av,
erage of Other Ratios: 0.5164835164835164 T,Statistic: −5.66220858504931 P,Value:
0.010908789440745323

Missing Values: Highest Ratio 0 Average Others 0 T,Statistic 1 P,Value 1 Label 0 dtype: int64

From the graphs and statistical summaries, several inferences can be drawn regarding the
distributions and relationships between the variables in the dataset:

Distribution of Highest Ratio: The distribution of the “Highest Ratio” variable shows
a clear distinction between the “Original” and “Watermarked” categories. The “Original”
category has a peak around 0.4, while the “Watermarked” category peaks around 0.5,
indicating a shift in the distribution towards higher values for the watermarked data.

Distribution of Average Others: Similarly, the “Average Others” variable shows a distinc,
tion between the two categories. The “Original” category peaks around 0.3, whereas the
“Watermarked” category peaks slightly higher, around 0.4. This suggests that the average
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Table 1.  First few rows of the DataFrame

Highest Ratio Average Others T-Statistic P-Value Label

0 0.233333 0.182203 −3.532758 0.038563 Origi,
nal

1 0.203390 0.139195 −3.440591 0.041218 Origi,
nal

2 0.338983 0.270339 −2.228608 0.112142 Origi,
nal

3 0.254237 0.168362 −2.451613 0.246559 Origi,
nal

4 0.288136 0.210876 −5.467540 0.012026 Origi,
nal

Table 2.  Statistical Summary

Highest Ratio Average Others T-Statistic P-Value

count 4000.000000 4000.000000 3999.000000 3999.000000

mean 0.490285 0.339968 −6.076672 0.036783

std 0.128376 0.082900 5.580957 0.043217

min 0.101695 0.066667 −111.524590 0.000002

25% 0.416667 0.296610 −6.938964 0.006418

50% 0.491525 0.354732 −4.431515 0.021973

75% 0.573770 0.398224 −3.176861 0.052069

max 0.868852 0.580601 −1.166065 0.451288

values for other ratios are higher in the watermarked data compared to the original data.
Distribution of T,Statistic:

Figure 2.  Distribution of highest ratio
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Figure 3.  Distribution of average others

Distribution of T-statistic: The distribution of the T,statistic is highly skewed to the left for
both categories, with a long tail extending to very negative values. The “Original” category
appears to have a more pronounced peak near 0, while the “Watermarked” category has a
lower count at the peak and a wider spread.

Distribution of P-Value: The P,value distribution is heavily skewed towards 0 for both
categories, with the “Watermarked” category showing a sharper peak at 0. This suggests
that most of the tests result in very low p,values, indicating strong statistical significance in
the differences observed.

Figure 4.  Distribution of t-statistics
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Figure 5.  Distribution of P-value

Pair Plot: The pair plot provides a visual comparison of the relationships between the
variables for the two categories. There are clear clusters and separations between the
“Original” and “Watermarked” categories in the scatter plots, particularly for “Highest
Ratio” vs. “Average Others” and “Highest Ratio” vs. “P,Value”. This reinforces the idea that
the watermarked data exhibits different characteristics compared to the original data.

Figure 6.  Dataset
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Figure 7.  Correlation_Matrix

Correlation Matrix: The correlation matrix shows the pairwise correlation coefficients
between the variables. “Highest Ratio” and “Average Others” are positively correlated (0.66),
indicating that higher values of the highest ratio tend to be associated with higher average
values of other ratios. “T,Statistic” has a negative correlation with “Highest Ratio” (,0.35) and
“P,Value” (,0.31), suggesting that higher ratios tend to result in more negative T,statistics
and lower p,values.

Overall Observations: The “Watermarked” data tends to have higher ratios and averages
compared to the “Original” data. The T,statistics and p,values indicate strong statistical
differences between the original and watermarked categories. The pair plot and correlation
matrix provide further evidence of distinct patterns and relationships in the watermarked
data compared to the original data.

While these plots do show a difference between the watermarked and non,watermarked
text, using a pre,trained model help us achieve higher efficiency and consistency in our
comparisons.

7. Model Training, Testing and Efficiency
The algorithm in this paper was trained using a dataset generated from Gutenberg’s top
10 books [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Specifically, 2000 random 300,word
paragraphs were taken from these books, ensuring an equal number of paragraphs from
each book. Each paragraph was watermarked, and then statistical analysis was performed.
The Highest Match Ratio, Average of Other Ratios, T,Statistic, and P,Value were calculated
and stored in Results.csv. The models were trained using an 80/20 split of the dataset, with
the following models being trained: Logistic Regression, Decision Tree, Random Forest,
Support Vector Machine, Gradient Boosting, AdaBoost, Naive Bayes, and K,Nearest Neigh,
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bors. Gradient Boosting gave the highest accuracy, resulting in an overall accuracy of 94%
in identifying watermarked text

Code used for model training

July 10, 2024 73



AI-Driven Watermarking Technique for Safeguarding Text Integrity  | Rasane, 2024

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix

# Assuming list_of_significance and list_of_significance_watermarked are already defined
# Create DataFrames from the lists
df_significance = pd.DataFrame(list_of_significance, columns=['Highest Ratio', 'Average Others', 'T-
Statistic', 'P-Value'])
df_significance_watermarked = pd.DataFrame(list_of_significance_watermarked, columns=['Highest Ratio',
'Average Others', 'T-Statistic', 'P-Value'])

# Add a label column to distinguish between the two sets
df_significance['Label'] = 'Original'
df_significance_watermarked['Label'] = 'Watermarked'

# Combine the DataFrames
combined_df = pd.concat([df_significance, df_significance_watermarked], ignore_index=True)
combined_df = combined_df.dropna()

# Prepare the data
X = combined_df.drop(columns=['Label'])
y = combined_df['Label']

# Convert labels to numerical values for ML model
y = y.map({'Original': 0, 'Watermarked': 1})

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize models
models = {
    'Logistic Regression': LogisticRegression(random_state=42, max_iter=1000),
    'Decision Tree': DecisionTreeClassifier(random_state=42),
    'Random Forest': RandomForestClassifier(random_state=42),
    'Support Vector Machine': SVC(random_state=42),
    'Gradient Boosting': GradientBoostingClassifier(random_state=42),
    'AdaBoost': AdaBoostClassifier(random_state=42),
    'Naive Bayes': GaussianNB(),
    'K-Nearest Neighbors': KNeighborsClassifier()
}

# Train and evaluate models
for model_name, model in models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print(f"\n{model_name} Classification Report:")
    print(classification_report(y_test, y_pred))
    print(f"\n{model_name} Confusion Matrix:")
    print(confusion_matrix(y_test, y_pred))

    # Feature importances (only for models that provide it)
    if hasattr(model, 'feature_importances_'):
        feature_importances = model.feature_importances_
        feature_importances_df = pd.DataFrame({
            'Feature': X.columns,
            'Importance': feature_importances
        }).sort_values(by='Importance', ascending=False)

        # Plot feature importances
        plt.figure(figsize=(12, 8))
        sns.barplot(x='Importance', y='Feature', data=feature_importances_df, palette='viridis')
        plt.title(f'{model_name} Feature Importances')
        plt.show()

Code for Model testing
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import os
import random

def extract_test_cases(folder_path, num_cases=2000, words_per_case=300):
    test_cases = []
    book_files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]

    # Calculate the number of test cases to extract from each book
    cases_per_book = num_cases // len(book_files)
    extra_cases = num_cases % len(book_files)

    for book_file in book_files:
        with open(os.path.join(folder_path, book_file), 'r', encoding='utf-8') as file:
            text = file.read()
            words = text.split()
            num_words = len(words)

            # Ensure enough words are available to extract the cases
            if num_words < words_per_case:
                continue

            # Determine the number of cases to extract from this book
            num_cases_from_book = cases_per_book
            if extra_cases > 0:
                num_cases_from_book += 1
                extra_cases -= 1

            for _ in range(num_cases_from_book):
                start_index = random.randint(0, num_words - words_per_case)
                case = ' '.join(words[start_index:start_index + words_per_case])
                test_cases.append(case)

                if len(test_cases) == num_cases:
                    return test_cases

    return test_cases

# Usage example
folder_path = 'books'
test_cases = extract_test_cases(folder_path)

list_of_significance = []
list_of_significance_watermarked = []
count_t = 0
for text in test_cases:
  count_t+=1
  print("______________________________")
  print("Doing", count_t)
  print("______________________________")

  words_to_add = ["example", "test", "random", "insert"]
  num_words_to_add = 5

  modified_text = randomly_add_words(watermark_text(text, offset=0), words_to_add, num_words_to_add)

  match_ratios = watermark_text_and_calculate_matches(modified_text, max_offset=5)
  list_of_significance_watermarked.append(check_significant_difference(match_ratios))

  match_ratios = watermark_text_and_calculate_matches(text, max_offset=5)
  list_of_significance.append(check_significant_difference(match_ratios))

  print("______________________________")
  print("Done", count_t, )
  print("______________________________")

8. Analysis of the Algorithm
Strengths:
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1. Robustness against attacks: The BERT,based watermarking algorithm uses the sophis,
ticated context,understanding capability of BERT to embed watermarks. This makes
the watermark integration deeply intertwined with the text’s semantic structure,
which is difficult to detect and remove without altering the underlying meaning, thus
providing robustness against simple text manipulation attacks.

2. Comparison with existing methods: Compared to traditional watermarking methods
like word context and UniSpaCh, the BERT,based approach offers a more adaptable
and less detectable method. It does not rely on altering visible text elements or
patterns easily erased, like white spaces or specific word sequences. Instead, it uses
semantic embedding, making it superior in maintaining the natural flow and read,
ability of the text.

3. Scalability and adaptability: The method is scalable to different languages and text
forms by adjusting the BERT model used. It can be adapted to work with different
BERT variants trained on specific datasets, enhancing flexibility in deployment.

Challenges:

1. Dependency on model consistency: The watermark detection relies heavily on the
consistency of the BERT model’s output. Any updates or changes in the model
could potentially alter the watermark, making it undetectable. If the watermark can
embbed some sort of version history and control, this could be managed.

2. Data Integrity is highly dependent on the Model: the integrity of the watermarked text
depends on how good the model is at replacing the given word, due to the nature of
AI,generated text where all the previous tokens are used to generate new ones BERT
watermarking can preserve integrity much more effectively. However if it were to
watermark text which is completely different from its training dataset it might return
an incoherent output, for example if the dataset of BERT consists of scientific papers
it will struggle immensely when trying to watermark fairy tails.

3. Potential for false positives/negatives: Given the probabilistic nature of BERT’s pre,
dictions, there is a risk of incorrect watermark detection, especially in texts with
complex semantics or those that closely mimic the watermark patterns without
actually being watermarked.

4. Potential loss of context: When words are replaced, the intended context of delivery
could be altered. However, AI models are continually improving, and we hope that a
well,trained model can significantly mitigate this risk.

Real-world applicability:

1. Versatility in applications: This method can be applied across various fields such as
copyright protection, and content authentication, and in legal and academic settings
where proof of authorship is crucial. It is particularly beneficial for managing
copyrights in digital media, academic papers, and any online content where text is
dynamically generated or reused.

2. Integration with existing systems: The algorithm can be seamlessly integrated
with current content management systems (CMS) and digital rights management
(DRM) systems, enhancing their capabilities to include advanced text watermarking
features. This integration helps organizations maintain control over their content
distribution and monitor usage without invasive methods.

3. Application in AI,generated text: With the proliferation of AI,generated content
from models like ChatGPT, GPT,4, and other AI writing assistants, distinguishing
between human,generated and AI,generated text becomes crucial. The BERT,based
watermarking can be used to embed unique, non,intrusive identifiers into AI,gener,
ated texts, ensuring that each piece of content can be traced back to its source. This
is particularly valuable in preventing the spread of misinformation, verifying the
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authenticity of content, and in applications where copyright claims on AI,generated
content might be disputed.

4. Forensic Linguistics in Cybersecurity: In cybersecurity, determining the origin of
phishing emails or malicious texts can be crucial. BERT,based watermarking can
assist forensic linguists and security professionals by providing a means to trace the
origins of specific texts back to their creators, helping to identify patterns or sources
of cyber threats.

5. Enhanced Licensing Control for Digital Text: As digital content licensing becomes
more complex with different rights for different geographies and platforms, water,
marking can help content owners and licensing agencies enforce these rights more
effectively. The watermark makes it easier to enforce and monitor compliance auto,
matically.

9. Conclusion
By leveraging the BERT model and the proposed algorithm, we have achieved a 94% accu,
racy rate in detecting watermarked text. With an appropriate training dataset and ongoing
advancements in AI technology, this approach promises even more robust watermarking
techniques. This progress will enhance our ability to identify AI,generated content and
provide an effective means for detecting plagiarism.
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Abstract

Evaluating probabilistic forecasts is complex and essential across various domains, yet no
comprehensive software framework exists to simplify this task. Despite extensive literature
on evaluation methodologies, current practices are fragmented and often lack reproducibil-
ity. To address this gap, we introduce a reproducible experimental workflow for evaluating
probabilistic forecasting algorithms using the sktime package. Our framework features
a unified software API for forecasting algorithms, a simple specification language for com-
plex algorithms, including meta-algorithms like bootstrapping, probabilistic performance
metrics, and standardized evaluation workflows. We demonstrate the framework’s efficacy
through a study evaluating prediction intervals added to point forecasts. Our results high-
light the improved prediction accuracy and reliability of combined approaches. We provide
reusable code and invite contributions from the research community to extend our experi-
ments and tackle computational challenges for broader studies.

Keywords time series, machine learning, benchmarking

1. Introduction
Making probabilistic forecasts is challenging, and evaluating probabilistic forecasts, or the
algorithms that produce them, is even more difficult.

A significant body of literature focuses on developing robust meta-methodologies for
evaluation. This includes evaluation metrics such as the Continuous Ranked Probability
Score (CRPS) [1] and their properties, like properness, as well as benchmarking setups and
competitions like the Makridakis competitions [2], [3]. This meta-field builds upon a broader
primary field that develops methodologies for algorithms producing probabilistic forecasts,
encompassing classical methods, uncertainty estimation techniques like bootstrap or con-
formal intervals, and modern deep learning and foundation models [4], [5], [6], [7].

Despite the critical importance of evaluating probabilistic forecasts in various domains,
including finance, energy, healthcare, and climate science, no comprehensive software
framework or interface design has emerged to cover all these needs with a simple workflow
or specification language. For instance, the reproducing code for the Makridakis compe-
titions—while extensive in scope—relies on forecasts generated from disparate software
interfaces. Similar issues are found in other benchmarking studies, where code availability
is often limited or nonexistent [8], [9]. This lack of unified interfaces makes it challenging
for practitioners in both industry and academia to contribute to or verify the growing body
of evidence.
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To address these limitations, we present a simple, reproducible experimental workflow
for evaluating probabilistic forecasting algorithms using sktime [10]. As of 2024, the sktime
package provides the most comprehensive collection of time series-related algorithms in
unified interfaces and stands out as the only major, non-commercially governed framework
for time series forecasting.

The key components of this reproducible benchmarking framework are:

• A unified software API for forecasting algorithms, mirroring a unified mathematical
interface.

• Composite forecasters (meta-algorithms), such as adding prediction intervals via time
series bootstrapping, which themselves follow the same forecasting interface from
both software and mathematical perspectives.

• A first-order language that allows for the unambiguous specification of even complex
forecasting algorithms.

• A unified software API for probabilistic performance metrics, covering metrics for
distribution as well as interval or quantile forecasts.

• A standardized workflow for obtaining benchmark result tables for combinations of
algorithms, metrics, and experimental setups.

To demonstrate the efficacy and ease of use of sktime in benchmarking probabilistic
forecasters, we conducted a small study exploring the performance of various meta-
algorithms (wrappers) that add prediction intervals to point forecasters. We investigated
a range of forecasters, including Naive Forecasting and AutoTheta models [11], along with
probabilistic wrappers such as Conformal Intervals and BaggingForecaster with different
bootstrapping methods. For the bootstrapping methods, we use the tsbootstrap library [12],
[13].

The study’s goal was to evaluate the effectiveness of these combined approaches in improv-
ing prediction accuracy and reliability.

We conducted experiments on several common datasets, including Australian electricity
demand [14], sunspot activity [15], and US births [16]. These datasets represent different
time frequencies and characteristics.

Our paper is accompanied by easily reusable code, and we invite the open research and
open-source communities to contribute to extending our experiments or using our code to
set up their own. As is often the case in modern data science, computational power is a
limiting factor, so we hope to leverage the SciPy conference to plan a more comprehensive
set of studies.

The remainder of this paper is organized as follows: In Section 3, we describe the forecasting
methods and probabilistic wrappers used in our experiments. Section  4.2 provides an
overview of the datasets used for evaluation. In Section 4.3, we present the experimental
results and discuss the performance of the combined approaches. Finally, in Section 5, we
conclude the paper and outline directions for future research.

2. sktime and tsbootstrap for Reproducible Experiments
In this section, we summarize the key design principles used for reproducible benchmark-
ing in sktime. Thereby, from a software perspective, it is worth noting that sktime [10],
[17] contains multiple native implementations, including naive methods, all probability
wrappers, and pipeline composition, but also provides a unified interface across multiple
packages in the time series ecosystem, e.g.:
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• tsbootstrap [12], [13]: A library for time series bootstrapping methods, integrated
with sktime.

• statsforecast [18]: A library for statistical and econometric forecasting methods,
featuring the Auto-Theta algorithm.

• statsmodels [19]: A foundational library for statistical methods, used for the desea-
sonalizer and various statistical primitives.

This hybrid use of sktime as a framework covering first-party (itself), second-party
(tsbootstrap), and third-party (statsmodels, statsforecast) packages is significant. Credit goes
to the maintainers and implementers of these packages for implementing the contained
algorithms that we can interface.

2.1. Unified Interface

In sktime and tsbootstrap, algorithms and mathematical objects are treated as first-class
citizens. All objects of the same type, such as forecasters, follow the same interface. This
consistency ensures that every forecaster is exchangeable with any other. The same holds
for all bootstrapping methods in tsbootstrap. Thus, they are easily exchangeable enabling
simple and fast experimentation.

Forecasters are objects with fit and predict methods, allowing both the target time series
(endogenous data) and the time series that influence the target time series (exogenous data)
to be passed. For example, the following code (Program 1) specifies a forecaster, fits it, and
makes predictions.

A crucial design element in the above is that line 9 can specify any forecaster - for instance,
ARIMA or ExponentialSmoothing, and the rest of the code will work without modification.

Currently, sktime supports the construction of 82 individual forecasters. Some of these are
implemented directly in sktime, but sktime also provides adapters providing a unified API
to forecasting routines from other libraries, such as gluonts and prophet. Each forecaster
is parametric, with configurations ranging from 1 to 47 parameters across different fore-
casters. A list of forecasters can be obtained or filtered via the all_estimators utility.

# importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster

# load exemplary data
y = load_airline()

# specifying the forecasting algorithm
forecaster = NaiveForecaster(strategy="last", sp=12)

# fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y, fh=[1, 2, 3])

# querying predictions
y_pred = forecaster.predict()

Program 1.  Exemplary code for fitting and predicting with a forecaster

from sktime.registry import all_estimators

# get all forecasters
all_forecasters = all_estimators("forecaster")

# get all forecasters that support prediction intervals
all_estimators("forecaster", filter_tags={"capability:pred_int": True})

Program 2.  Code to list all forecaster and all probabilistic forecasters (tag=capability:pred_int)
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# importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster

# load exemplary data
y = load_airline()

# specifying the forecasting algorithm
forecaster = NaiveForecaster(strategy="last", sp=12)

# fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y, fh=[1, 2, 3])

# making interval predictions
y_pred_int = forecaster.predict_interval()
# making distribution predictions
y_pred_proba = forecaster.predict_proba()

Program 3.  Exemplary probabilistic forecast with NaiveForecaster

To better filter the forecasters (as well as the other estimators such as classifiers and
regressors) based on their properties and capabilities and to control their behaviour, sktime
implements a tag system. Each estimator, such as a forecaster, has a dict _tags, with a string
as a key describing the name and a value of an arbitrary type describing the property. This
type system enables an easy identification of all probabilistic forecasters, since they are
tagged with the "capability:pred_int" tag. Currently, 45 of the 82 forecasters support proba-
bilistic prediction modes (Program 2), such as prediction intervals, quantile predictions, or
full distributional predictions:

More details can be found in the official tutorials (an overview of notebooks and tutorials is
provided on our homepage). Creating algorithms with compatible APIs is straightforward.

sktime and tsbootstrap provide fill-in extension templates for creating algorithms in a
compatible interface, which can be shared in a third-party code base and indexed by sktime,
or contributed directly to sktime.

2.2. Reproducible Specification Language

All objects in sktime are uniquely specified by their construction string, which serves as
a reproducible blueprint. Algorithms are intended to be stable and uniquely referenced
across versions; full replicability can be achieved by freezing Python environment versions
and setting random seeds.

For example, the specification string NaiveForecaster(strategy="last", sp=12) uniquely spec-
ifies a native implementation of the seasonal last-value-carried-forecaster, with seasonality
parameter 12.

Typical sktime code specifies the forecaster as Python code, but it can also be used as a string
to store or share specifications. The registry.craft utility converts a Python string into an
sktime object, ensuring easy reproducibility:

which can be used to copy a full specification from a research paper and immediately
construct the respective algorithm in a Python environment, even if full code has not been
shared by the author.

from sktime.registry import craft
forecaster = craft('NaiveForecaster(strategy="last", sp=12)')

Program 4.  Code to craft a forecaster from a string
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# importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.conformal import ConformalIntervals

# load exemplary data
y = load_airline()

# specifying the forecasting algorithm
forecaster = ConformalIntervals(NaiveForecaster(strategy="last", sp=12))

# fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y, fh=[1, 2, 3])

# making interval predictions
y_pred_int = forecaster.predict_interval()

Program 5.  Code to add conformal prediction intervals to a forecaster

This approach makes it extremely easy to share specifications reproducibly, simplifying the
often convoluted process of describing algorithms in research papers.

2.3. Meta-Algorithms and Composability

sktime provides not only simple algorithms as objects in unified interfaces but also meta-
algorithms, such as data processing pipelines or algorithms that add interval forecast
capability to existing forecasting algorithms. Importantly, these composites also follow
unified interfaces.

This leads to a compositional specification language with rich combinatorial flexibility.
For example, the following code adds conformal prediction interval estimates to the
NaiveForecaster (Program 5):

The conformal prediction interval fits multiple instances of the wrapped forecaster on
parts of the time series using window sliding. In particular, each forecaster’s instance 𝑖 is
fit on the time series 𝑦1:𝑡𝑖 , where 𝑡𝑖 ≠ 𝑡𝑗. Afterwards, the residuals are computed on the
remaining time series 𝑦𝑡𝑖+1:𝑛, where 𝑛 is the length of the time series. Out of these residuals,
the prediction intervals are computed. The resulting algorithm possesses fit, predict, and -
added by the wrapper - predict_interval, as well as the capability:pred_int tag.

Data transformation pipelines can be constructed similarly, or with an operator-based
specification syntax (Program 6):

This creates a forecasting algorithm that first computes differences, then re-
move the seasonality (deseasonalize) by assuming a periodicity of 12. Then the

# importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.transformations.series.detrend import Deseasonalizer
from sktime.transformations.series.difference import Differencer

# load exemplary data
y = load_airline()

pipeline = Differencer() * Deseasonalizer(sp=12) * NaiveForecaster(strategy="last")

# fitting the forecaster -- forecast y into the future, 3 steps ahead
pipeline.fit(y, fh=[1, 2, 3])

# making interval predictions
y_pred_int = pipeline.predict()

Program 6.  Code to construct a pipeline with a differencer and a seasonalizer
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# importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.performance_metrics.forecasting.probabilistic import CRPS
from sktime.split import temporal_train_test_split

# load exemplary data
y = load_airline()
y_train, y_test = temporal_train_test_split(y, test_size=36)

# specifying the forecasting algorithm
forecaster = NaiveForecaster(strategy="last", sp=12)

# fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y_train, fh=y_test.index)

# making interval predictions
y_pred_int = forecaster.predict_interval()
# making distribution predictions
y_pred_proba = forecaster.predict_proba()

# Initialise the CRPS metric
crps = CRPS()

# Calculate the CRPS
crps(y_test, y_pred_proba)

Program 7.  Code to make probabilistic forecasts and calculate the CRPS

NaiveForecaster(strategy="last") uses the last value as prediction for the next value (last-
value-carry-forward method). Finally it adds the seasonality back and inverts the first
differences. As before, the resulting forecaster provides unified interface points and is
interchangeable with other forecasters in sktime.

2.4. Probabilistic Metrics

In sktime, evaluation metrics are first-class citizens. Probabilistic metrics compare the
ground truth time series with predictions, representing probabilistic objects such as predic-
tive intervals or distributions. For example:

Tags control the type of probabilistic prediction expected, such as "scitype:y_pred" with the
value "pred_proba" for CRPS.

2.5. Benchmarking and Evaluation

Our benchmarking framework involves a standardized workflow for obtaining benchmark
result tables for combinations of algorithms, metrics, and experimental setups. Here is an
example of how to add forecasters and tasks:

This approach ensures that our benchmarking process is both comprehensive and repro-
ducible.

2.6. Prior Work

The design principles of sktime draw inspiration from several established machine learn-
ing frameworks. Notably, scikit-learn in Python [20], mlr in R [21], and Weka [22] have
pioneered the use of first-order specification languages and object-oriented design patterns
for machine learning algorithms.

sktime extends these foundational ideas by introducing specialized interfaces for time series
forecasting, including both point and probabilistic forecasts. It also incorporates unique
features such as:

• Probabilistic forecasters and associated metrics interfaces
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# Example code to add forecasters and tasks

# Import the necessary modules
from sktime.benchmarking.forecasting import ForecastingBenchmark
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.performance_metrics.forecasting.probabilistic import CRPS
from sktime.split import SlidingWindowSplitter

# Initialise the benchmark object
benchmark = ForecastingBenchmark()

# Add a forecaster to the benchmark
benchmark.add_estimator(
    estimator=NaiveForecaster(strategy="last", sp=12),
    estimator_id="naive_forecaster"
)

# Initialise the Splitter
cv_splitter = SlidingWindowSplitter(
    step_length=12,
    window_length=24,
    fh=range(12)
)

# Add a task to the benchmark
# A task is a combination of a dataset loader, a splitter, and a list of metrics
benchmark.add_task(
    load_airline,
    cv_splitter,
    [CRPS()]
)

# Run the benchmark
benchmark.run("result.csv")

Program 8.  Example usage of the ForecastingBenchmark in sktime.

• Reproducibility patterns and APIs
• Meta-algorithms for enhanced composability
• Inhomogeneous API composition for flexible algorithmic design

Additionally, the R/fable package [23] has contributed similar concepts specifically tailored
to forecasting, which sktime has expanded upon or adapted to fit within its framework.

By leveraging and building upon these prior works, sktime offers a comprehensive and
adaptable toolkit for time series forecasting, fostering reproducible research and facilitat-
ing extensive benchmarking and evaluation. For a detailed analysis of design patterns in
AI framework packages and innovations in sktime, see [24].

Figure 1.  Benchmarking and evaluation framework
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3. Algorithmic Setup
In this section, we describe the forecasting algorithms used in our experiments. Our
methods combine traditional forecasting models with uncertainty estimation wrappers,
showcasing the benchmarking and model specification capabilities of sktime. This study
serves as an invitation to the scientific Python community to engage and contribute to a
more systematic study with reproducible specifications.

3.1. Forecasting Pipeline

Each forecaster is wrapped in a Differencer and a Deseasonalizer as preprocessing steps to
improve stationarity. These preprocessors are necessary because some forecasters require
the time series to be stationary (i.e., the properties of the time series at time 𝑡 + 1, 𝑡 + 2, …,
𝑡 + 𝑛 do not depend on the observation at time 𝑡 [25]) and non-seasonal.

• Differencer: Computes first differences, which are inverted after forecasting by cumu-
lative summing.

• Deseasonalizer(sp=data_sp): Removes the seasonal component, which is added back
after forecasting. It estimates the trend by applying a convolution filter to the data,
removing the trend, and then averaging the de-trended series for each period to return
the seasonal component.

All used forecasters are point forecasters, i.e., for each time step they provide one value
(point), and no information about the uncertainty of the forecast. Thus, they are combined
with one of the probabilistic wrappers to generate prediction intervals or quantile forecasts.

The partial pipeline specification, illustrated in Figure 2, is:

Differencer() * Deseasonalizer(sp=data_sp) * wrapper(forecaster)

where variable parts are wrapper, forecaster, and data_sp. These components are varied
as described below. Note the code for running the whole benchmark is provided in the
Section 4.

3.2. Component Forecasting Models

We use several component forecasting models in this study, each with unique character-
istics:

• NaiveForecaster(strategy, sp): Uses simple heuristics for forecasting. The strategy
parameter allows selecting the type of algorithm:

‣ mean: Uses the mean of the last 𝑁  values, with seasonal periodicity sp if passed.

Figure 2.  The forecasting pipeline used for all the forecasters
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‣ last: Uses the last observed, with seasonal periodicity sp if passed.
‣ drift: Fits a line between the first and last values of the considered window and

extrapolates forward.
• StatsForecastAutoTheta(sp): A variant of the Theta model of V. Assimakopoulos and K.

Nikolopoulos [26] with automated parameter tuning, from the statsforecast library.

3.3. Probabilistic Wrappers

We use the following probabilistic wrappers to enhance the forecasting models:

• ConformalIntervals(forecaster, strategy): Uses conformal prediction methods G.
Shafer and V. Vovk [27] to produce non-parametric prediction intervals. Variants of the
method are selected by the strategy parameter: Empirical and Empirical Residual
use training quantiles, with the latter using symmetrized residuals. Conformal imple-
ments the method of G. Shafer and V. Vovk [27], and Conformal Bonferroni applies
the Bonferroni correction [28] .

• BaggingForecaster(bootstrap_transformer, forecaster): Provides probabilistic forecasts
by bootstrapping time series and aggregating the bootstrap forecasts [25], [29]. The
BaggingForecaster takes a bootstrap algorithm bootstrap_transformer, a first-class object
in sktime. Various bootstrap algorithms with their parameters are applied in the study.

• NaiveVariance(forecaster): Uses a sliding window to compute backtesting residuals,
aggregated by forecasting horizon to a variance estimate. The mean is obtained from
the wrapped forecaster, and variance from the pooled backtesting estimate.

• SquaringResiduals(forecaster, residual_forecaster): Uses backtesting residuals on the
training set, squares them, and fits the residual_forecaster to the squared residu-
als. Forecasts of residual_forecaster are used as variance predictions, with mean
predictions from forecaster, to obtain a normal distributed forecast. In this study,
residual_forecaster is always NaiveForecaster(strategy="last").

3.4. Bootstrapping Techniques

Bootstrapping methods generate multiple resampled datasets from the original time series
data, which can be used as part of wrappers to estimate prediction intervals or predictive
distributions. In this study, we use bootstrap algorithms from tsbootstrap [12], [13],
sktime [10], and scikit-learn [20] compatible framework library dedicated to time series
bootstrap algorithms. sktime adapts these algorithms via the TSBootstrapAdapter, used as
bootstrap_transformer in BaggingForecaster.

• MovingBlockBootstrap: Divides the time series data into overlapping blocks of a fixed
size and resamples these blocks to create new datasets. The block size is chosen to
capture the dependence structure in the data.

• BlockDistributionBootstrap: Generates bootstrapped samples by fitting a distribution
to the residuals of a model and then generating new residuals from the fitted distrib-
ution. This method assumes that the residuals follow a specific distribution, such as
Gaussian or Poisson, and handles dependencies by resampling blocks of residuals. To
create a new time series, the bootstrapped residuals are added to the model’s fitted
values.

• BlockResidualBootstrap: Designed for time series data where a model is fit to the data,
and the residuals (the difference between the observed and predicted data) are boot-
strapped. This method is particularly useful when a good model fit is available for the
data. The bootstrapped samples are created by adding the bootstrapped residuals to
the model’s fitted values.

• BlockStatisticPreservingBootstrap: Generates bootstrapped time series data while pre-
serving a specific statistic of the original data. This method handles dependencies by
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resampling blocks of data while ensuring that the preserved statistic remains consis-
tent.

In this study, these bootstrapping techniques are used to estimate the distribution of
forecasts and generate robust prediction intervals and predictive distributions as part of
the BaggingForecaster.

3.5. Evaluation Metrics

We evaluate the performance of our forecasting models using the following metrics:

• CRPS - Continuous Ranked Probability Score [30] measures the accuracy of probabilistic
forecasts by comparing the predicted distribution to the observed values. The CRPS
for a real-valued forecast distribution 𝑑 and an observation 𝑦 can be defined as:

CRPS(𝑑, 𝑦) = 𝑬[| 𝑋 − 𝑦 |] − 1
2
𝑬[| 𝑋 −𝑋′ |], (1)

where 𝑋 and 𝑋′ are independent random variables with distribution 𝑑.
• PinballLoss - the pinball loss, also known as quantile loss [31], evaluates the accuracy

of quantile forecasts by penalizing deviations from the true values based on specified
quantiles. For quantile forecasts 𝑞1,…, 𝑞𝑘 at levels 𝜏1,…, 𝜏𝑘 and an observation 𝑦, the
Pinball Loss is defined as:

𝐿(𝑞, 𝑦) = 1
𝑘
∑
𝑘

𝑖=1
max(𝜏𝑖(𝑦 − 𝑞𝑖), (1 − 𝜏𝑖)(𝑞𝑖 − 𝑦)) (2)

The experiment uses the Pinball Loss at quantiles 0.05, and 0.95.
• AUCalibration - The Area between the calibration curve and the diagonal assesses how

well the prediction intervals capture the true values. For observations 𝑦1,…, 𝑦𝑛 and
corresponding distributional predictions with quantile functions 𝑄1,…,𝑄𝑛 (where
𝑄𝑖 = 𝐹−1𝑖  for the cdf 𝐹𝑖), the AUCalibration is defined as:

AUC(𝑄:, 𝑦:) =
1
𝑁
∑
𝑁

𝑖=1
| 𝑐(𝑖) −

𝑖
𝑁
|, (3)

where 𝑐𝑖 := 𝑄𝑖(𝑦𝑖), and 𝑐(𝑖) is the 𝑖-th order statistic of 𝑐1,…, 𝑐𝑁 .
• IntervalWidth - width of prediction intervals, or sharpness measures the concentration

of the prediction intervals. More concentrated intervals indicate higher confidence in
the forecasts. Sharpness is desirable because it indicates precise predictions. Sharp-
ness is calculated as the average width of the prediction intervals.

• EmpiricalCoverage - Empirical coverage measures how much of the observations are
within the predicted interval. It is computed as the proportion of observations that fall
within the prediction, providing a direct measure of the reliability of the intervals. A
prediction interval ranging from the 5th to the 95th quantile should cover 90% of the
observations. I.e., the empirical coverage should be close to 0.9.

• runtime - Besides metrics that assess the quality of the forecast, average runtime for
an individual fit/interence run is also reported. Runtime measures the computational
efficiency of the forecasting methods, which is crucial for practical applications.

4. Experiments
In this section, we describe the experimental setup, the datasets, the evaluation metrics, and
the experimental procedures. We explain how the experiments are designed to compare
the performance of different forecasting methods.
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4.1. Experimental Setup

To perform the benchmarking study, we use the framework described in Section 3. The
benchmarking compares different probabilistic wrappers on different datasets and with
different forecasters regarding CRPS, Pinball Loss, AUCalibration, and Runtime.

To enable easy replication of the experiments, we provide for each used forecaster, and
wrapper the hyperparameters by providing the used Python object instantiation in Table 1.
Note, that the parameter seasonal periodicity (sp) is dataset dependent and is set to 48 for
the Australian Electricity Dataset and 1 for the other datasets.

To create the cross validation folds, we use the SlidingWindowSplitter from sktime. The
instantiation of the splitter for each dataset is shown in Table 3. Figure 3 is showing the
resulting cross validation folds for the tree datasets. The properties of the datasets are
summarized in Table 2.

(a) (b) (c)
Figure 3.  The splits used for the evaluation on the three datasets. Blue indicates the training data, and
orange indicates the test data. The splits are created using the parameters from Table 2 and Table 3

4.2. Datasets

We evaluate our forecasting methods and probabilistic wrappers on several diverse time
series datasets, each offering unique characteristics:

• Australian Electricity Demand [14]: Half-hourly electricity demand data for five
states of Australia: Victoria, New South Wales, Queensland, Tasmania, and South
Australia, useful for high-frequency data evaluation.

• Sunspot Activity [15]: Weekly observations of sunspot numbers, ideal for testing
forecasting robustness on long-term periodic patterns.

• US Births [16]: Daily birth records in the United States, with a clear seasonal pattern,
suitable for daily data performance assessment.

4.3. Results

In this section, we present the results of our experiments. We evaluate the performance of
the forecasting methods combined with probabilistic wrappers on the datasets described
in Section 4.2.

To increase the conciseness, we calculated the rank of each probabilistic wrapper for each
combination of forecaster, metric, and dataset. Afterwards, for each metric, probabilistic
wrapper and dataset, we have calculated the average across all forecasters and time series.
In the following, we present the results for each dataset separately, except for the runtime,
which is the same for all three experiments. Thus, we describe it only for the Australian
Electricity Demand dataset.

4.3.1. Performance on Australian Electricity Demand:

The results for the Australian electricity demand dataset are summarized in Table 4. We
compare the performance of different forecasting models and probabilistic wrappers using
the previously described evaluation metrics.

The ranked based evaluation show that diverse results regarding the different metrics.
E.g. while CI Empirical Residual performs best on CRPS, it is only mediocre regarding the
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Table 1.  The table lists the specification strings for the estimators used in the study. Note that a full
pipeline consists of pre-processing, wrapper, and base forecaster, as detailed in Section 3.
Some of the parameters are determined by the used dataset: sp is 48 for the Autralian Electricity Dataset
and 1 for the other. The sample_freq is 0.005 for the Australian Electricity Dataset and 0.1 for the other.

Role Name Hyperparameters

Base Forecaster Naive last NaiveForecaster(strategy="last",
sp=sp)

Base Forecaster Naive mean NaiveForecaster(strategy="mean",
sp=sp)

Base Forecaster Naive drift NaiveForecaster(strategy="drift",
sp=sp)

Base Forecaster Theta StatsForecastAutoTheta(season_length=sp)

Wrapper CI Empirical ConformalIntervals(forecaster,
sample_frac=sample_frac)

Wrapper CI Empirical residuals ConformalIntervals(forecaster,
sample_frac=sample_frac,
method="empirical_residual")

Wrapper CI Conformal ConformalIntervals(forecaster,
sample_frac=sample_frac,
method="conformal")

Wrapper CI Bonferroni ConformalIntervals(forecaster,
sample_frac=sample_frac,
method="conformal_bonferroni")

Wrapper BaggingForecaster BaggingForecaster(ts_bootstrap_adapter,
forecaster))

Wrapper Naive Variance NaiveVariance(forecaster,
initial_window=14*sp))

Wrapper Squaring Residuals SquaringResiduals(forecaster,
initial_window=14*sp))

Forecasting Pipeline Pipeline Differencer(1) *
Deaseasonalizer(sp=sp) * Wrapper

ts_bootstrap_adapter TSBootstrapAdapter TSBootstrapAdapter(tsbootsrap)

tsbootstrap Moving Block Bootstrap MovingBlockBootstrap()

tsbootstrap Block Residual Bootstrap BlockDistributionBootstrap()

tsbootstrap Block Statistic Preserving Bootstrap BlockStatisticPreservingBootstrap()

tsbootstrap Block Distribution Bootstrap BlockDistributionBootstrap()

Pinball Loss and the AUCalibration. On PinballLoss, the best method is CI Empirical and
on AUCalibration, it is Moving Block Bootstrap. Regarding the runtime, the fastest method

Table 2.  To perform the evaluation, we used three datasets. Due to the different frequencies and lengths,
we used different parameters for the Sliding Window Splitter to create the cross-validation folds. This
table presents the parameters used for each dataset.

Dataset Forecast
Horizon

Step Width Window
Size

Cutout Pe1
riod

Number of
Folds

Seasonal
Periodicity

Australian
Electricity
Demand

48 1440 1440 Last Year 12 48

Sunspot Ac-
tivity

28 395 365 Last 40
Years

12 1

US Births 28 395 365 Whole
Time Series

12 1
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Table 3.  The code instantiation of the cross-validation splits used for the evaluation on the three datasets.
The parameters are taken from Table 2.

Dataset CV splitter

Australian Electricity Demand SlidingWindowSplitter(step_length=48*30,
window_length=48*30,fh=range(48))

Sunspot Activity SlidingWindowSplitter(step_length=395,
window_length=365,fh=range(28))

US Births SlidingWindowSplitter(step_length=395,
window_length=365,fh=range(28))

Table 4.  Performance of forecasting methods on the Australian electricity demand dataset

Wrapper CRPS Pinball Loss AUCalibration Runtime

Fallback 9.45 9.66 5.61 1.00

Naive Variance 7.75 7.20 7.15 10.00

Squaring Residuals 7.45 6.20 5.05 11.00

Block Distribution Bootstrap 4.08 3.15 6.82 7.83

Block Residual Bootstrap 4.30 5.58 5.84 8.32

Block Statistic Preserving Bootstrap 4.25 5.87 6.15 7.29

Moving Block Bootstrap 6.12 6.51 4.26 6.00

CI Conformal 5.75 5.40 5.69 3.92

CI Empirical 3.79 2.63 6.97 3.30

CI Empirical Residual 2.37 5.42 5.35 3.49

CI Bonferroni 10.50 8.05 6.70 3.70

is the fallback probabilistic prediction of the base forecaster. The slowest methods are
NaiveVariance and SquaringResiduals. Furthermore, it seems that the ConformalIntervals
are slightly faster than the BaggingForecasters.

4.3.2. Performance on Sunspot Activity:

Table 5 shows the performance of our methods on the sunspot activity dataset. The long-
term periodic patterns in this dataset provide a challenging test for our forecasting models.

The ranked based evaluation show that BaggingForecaster with the Block Distribution
Bootstrap scores clearly best regarding the CRPS and Pinball Loss, and AUCalibration.

4.3.3. Performance on US Births:

The results for the US births dataset are presented in Table 6. This dataset, with its clear
seasonal pattern, allows us to assess the models’ ability to handle daily data. The ranked
based evaluation show that BaggingForecaster with the Block Distribution Bootstrap scores
best regarding the CRPS and Pinball Loss. Regarding the AUCalibration, the best score is
achieved by CI Conformal.

5. Discussion and Conclusion
Our experiments demonstrate that the benchmarking framework in sktime provides an
easy-to-use solution for reproducible benchmarks. We showed this by conducting simple
benchmark studies of probabilistic wrappers for point forecasts on three different systems
and make the corresponding code available at: https://github.com/sktime/code_for_paper_
scipyconf24/tree/main.
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Table 5.  Performance of forecasting methods on the sunspot activity dataset

Wrapper CRPS PinballLoss AUCalibration Runtime

Fallback 9.00 7.25 9.50 1.00

Naive Variance 6.50 6.25 7.75 10.00

Squaring Residuals 8.00 8.00 4.75 11.00

Block Distribution Bootstrap 1.00 1.00 3.00 7.25

Block Residual Bootstrap 6.00 6.25 5.00 6.75

Block Statistic Preserving Bootstrap 5.50 7.00 2.50 6.25

Moving Block Bootstrap 5.75 5.75 7.50 5.00

CI Conformal 4.75 4.50 6.75 4.50

CI Empirical 5.50 4.00 7.25 4.50

CI Empirical Residual 3.50 8.00 6.25 4.25

CI Bonferroni 10.50 8.00 5.75 5.50

Table 6.  Performance of forecasting methods on the US births dataset

Wrapper CRPS PinballLoss AUCalibration Runtime

Fallback 9.25 9.50 7.88 1.00

Naive Variance 6.25 5.75 6.25 10.00

Squaring Residuals 9.50 8.50 6.50 11.00

Block Distribution Bootstrap 1.00 1.00 8.25 7.25

Block Residual Bootstrap 3.75 5.75 5.50 7.00

Block Statistic Preserving Bootstrap 5.50 6.00 7.38 6.25

Moving Block Bootstrap 5.75 5.25 5.12 4.75

CI Conformal 6.00 6.00 4.75 4.25

CI Empirical 5.50 4.50 4.88 4.75

CI Empirical Residual 3.00 6.00 5.00 5.25

CI Bonferroni 10.50 7.75 4.50 4.50

Regarding our benchmark study, we note that this is a limited study primarily aimed at
showcasing the capabilities of the proposed framework. Therefore, future work should
include a comprehensive hyperparameter search to identify the best parameters for the
probabilistic wrappers. Additionally, further bootstrapping methods need to be explored,
as well as other wrappers such as generative neural networks, including Generative Adver-
sarial Networks, Variational Autoencoders, or Invertible Neural Networks [32], [33].

Besides extending the range of wrappers, we also plan to include additional point forecast-
ers as base models, such as AutoARIMA, in our study. Furthermore, the number of examined
datasets should be expanded to provide a more comprehensive evaluation. Finally, we did
not perform a grid search on the hyperparameters for the wrappers, which means that with
different hyperparameters, their performance and runtime might change.

In conclusion, the sktime evaluation modules enable the performance of reproducible
forecasting benchmarks. We demonstrated its applicability in a small benchmarking study
that compares different probabilistic wrappers for point forecasters. In future work, we
aim to collaborate with the scientific community to integrate more wrappers and conduct
a broader benchmark study on this topic.
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Abstract

Jupyter is a popular platform for writing interactive computational narratives that contain
computer code and its output interleaved with prose that describes the code and the output.
It is possible to use one’s voice to interact with Jupyter notebooks. This capability improves
access to those with impaired use of their hands. Voice computing also increases the produc-
tivity of workers who are tired of typing and increases the productivity of those workers who
speak faster than they can type. Voice computing can be divided into three activities: speech-
to-text, speech-to-command, and speech-to-code. We will provide examples of the first two
activities with the Voice-In Plus plugin for Google Chrome and Microsoft Edge. To support
the editing of Markdown and code cells in Jupyter notebooks, we provide several libraries of
voice commands at MooersLab on GitHub.

Keywords accessibility, productivity, human-computer interface

1. Introduction
Voice computing includes speech-to-text, speech-to-commands, and speech-to-code. These
activities enable you to use your voice to generate prose, operate your computer, and write
code. Using your voice can partially replace use of the keyboard when tired of typing,
suffering from repetitive stress injuries, or both. With the Voice In Plus plugin for Google
Chrome and Microsoft Edge, we could be productive within an hour. This plugin is easy to
install, provides accurate dictation, and is easy to modify to correct wrong word insertions
with text replacements.

We mapped spoken words to be replaced, called voice triggers, to equations set in LaTeX and
to code snippets that span one to many lines. These voice-triggered snippets are analogous
to traditional tab-triggered snippets supported by most text editors. (A tab trigger is a
placeholder word replaced with the corresponding code when the tab key is pressed after
entering the tab trigger. The existing extensions for code snippets in Jupyter do not support
tab triggers.) We could use Voice In Plus to insert voice-triggered snippets into code and
Markdown cells in Jupyter notebooks. Our voice-triggered snippets still require customizing
to the problem at hand via some use of the keyboard, but their insertion by voice command
saves time.

To facilitate voice commands in Jupyter notebooks, we have developed libraries of voice-
triggered snippets for use in Markdown or code cells with the Voice-In Plus plugin. We
are building on our experience with tab-triggered code snippets in text editors [1] and
domain-specific code snippet libraries for Jupyter [2]. We have made libraries of these
voice-triggered snippets for several of the popular modules of the scientific computing stack
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for Python. These voice-triggered snippets are another tool for software engineering that
complements existing tools for enhancing productivity.

2. Methods and Materials

2.1. Hardware

We used a 2018 15-inch MacBook Pro laptop computer. It had 32 gigabytes of RAM and one
Radeon Pro 560X 4 GB GPU. We used the laptop’s built-in microphone to record dictation
while sitting or standing up to 20 feet (ca. 6 m) away from the computer.

2.2. Installation of Voice In Plus

We used the Voice In plugin provided by Dictanote Inc. First, we installed the Voice In plugin
by navigating to the Plugin In page in the Google Chrome Web Store on the World Wide Web.
Second, the Microsoft Edge Addons web site was accessed to install the plugin in Microsoft
Edge.

We needed an internet connection to use Voice In because Dictanote tracks the websites
visited and whether the plugin worked on those websites. Voice In uses the browser’s built-
in Speech-to-Text software to transcribe speech into text, so no remote servers are used
for the transcription,/ so the transcription process was nearly instant and kept up with the
dictation of multiple paragraphs. Dictanote does not store the audio or the transcripts.

After activating the plugin, we customized it by selecting a dictation language from a pull-
down menu. We selected English (United States) from the 15 dialects of English. The
English variants include dialects from Western Europe, Africa, South Asia, and Southeast
Asia; many languages other than English are also supported.

Next, we set a keyboard shortcut to activate the plugin. We selected command-L on our Mac
because this shortcut was not already in use. A list of Mac shortcuts can be found here. This
second customization was the last one that we could make for the free version of Voice In.

Customized text replacements are available in Voice In Plus. Voice In Plus is activated by
purchasing a $39 annual subscription through the Subscription sub-menu in the Voice In
Settings sidebar of the Voice In Options web page. Monthly and lifetime subscription options
are available. Only one subscription was required to use Voice In Plus in both web browsers.
The library is synched between the browsers.

After purchasing a subscription, we accessed the Custom Commands in the Voice In
Settings sidebar. We used the Add Command button to enter a voice trigger to start a
new sentence when writing one sentence per line Figure 1. The custom command for new
paragraph can include a period followed by two new line commands, which works well when
writing with blank lines between paragraphs and without indentation.

The phrases making up these voice triggers will no longer be available during dictation
because they will be used to trigger text replacements. It is best to pick as voice triggers
phrases that are unlikely to be spoken during dictation.

We kept the voice triggers as short as possible to ease accurate recall of the voice triggers.
We had trouble correctly recalling voice triggers longer than four or five words. Three-word
voice triggers are a good compromise between specificity and success at recall.

An exception to this guideline for shorter voice triggers was using two to three words at the
beginning of a set of voice triggers to group them in the online Voice In library. Grouping
related voice commands made finding them in the online library easier. For example, all
Jupyter-related line magic voice triggers start with the phrase line magic. The prefix line
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Figure 1.  Entering a single voice trigger and the corresponding command in Voice In Plus.

Figure 2.  Snapshot of CSV file on Github for the jupyter-voice-in library.

magic is easy to remember, so it only adds a little to the recall problem. We show below a
snapshot of the CSV file displayed in a pleasant format on GitHub for the Jupyter line magics
Figure 2. Note that these CSV files are atypical because they do not contain a line of column
headers; Voice In does not recognize column headings.

The accuracy of the software’s interpretation of the phrase was another limitation. We
would replace frequently misinterpreted words with other words that were more often
correctly interpreted.

We had to avoid making voice triggers that overlapped longer voice triggers to avoid
unintended text replacements. For example, when we found a two-word phrase starting
a four-word phrase, we would extend the two-word phrase to three words by selecting a
third word to break the overlap between the two voice triggers. Otherwise, the two-word
phrase would trigger a text replacement different from the text replacement expected from
the four-word phrase.

We used the Bulk Add button to upload multiple commands from a two-column CSV file
with commas as the field separator. We selected the file contents and pasted them in the
open text box after clicking the Bulk Add button. The voice triggers reside in the left
column, and the text replacements reside in the right column. The software ignored any
capitalization in the voice trigger.

We handled multiline text replacements in one of two ways. First, we placed all the text on
a single line and inserted the built-in command <newline> where linebreaks were needed.
Second, we enclosed the multiline replacement text with one set of double quotes. Double
quotes inside these text blocks had to be replaced with single quotes. We could use a back-
slash to escape internal pre-existing double quotation marks. Text replacements consisting
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of commas also had to be enclosed with double else the commas would be misinterpreted
as field separators. This also applied on Python code that contained commas.

We used the Bulk Add button to upload multiple commands from a two-column CSV file
with commas as the field separator. We selected the file contents and pasted them in the
open text box after clicking the Bulk Add button. The voice triggers reside in the left
column, and the text replacements reside in the right column. The software ignored any
capitalization in the voice trigger.

We handled multiline text replacements in one of two ways. First, we placed all the text on
a single line and inserted the built-in command <newline> where linebreaks were needed.
Second, we enclosed the multiline replacement text with one set of double quotes. Double
quotes inside these text blocks had to be replaced with single quotes. We could not use a
backslash to escape internal pre-existing double quotation marks.

The Export button opened a text box with the custom commands in CSV file format.
We selected all the text box contents, copied them, and pasted them into a local CSV file
using either the text editor TextMate or Emacs version 29.3. We used the Synch button to
synchronize devices.

A GUI shows all the voice triggers and their text replacements immediately below the row
of buttons mentioned above. Each row in the GUI has edit and delete icons. The edit icon
opens a pop-up menu similar to the pop-up menu invoked by the Add Command button.

2.3. Construction of the snippet libraries

Some of our voice snippets had already been used for a year to compose prose using
dictation. These snippets are in modular CSV files to ease their selective use. The contents
of these files can be copied and pasted into the bulk add text area of the Voice In Plus
configuration GUI.

2.4. Construction of interactive quizzes

We developed an interactive quiz to aid the mastery of the Voice In Plus syntax. We wrote
the quiz as a Python script that can run interactively in the terminal or Jupyter notebooks.
The quiz randomizes the order of the questions upon restart, ensuring a fresh experience
every time. When you encounter a question you cannot answer, the quiz steps in to
provide feedback, empowering you to learn from your mistakes and improve. Your wrongly
answered questions are recycled during the current quiz session to allow you to answer the
question correctly. This repetition helps build recall of the correct answers. We set a limit
of 40 questions per quiz, allowing you to pace your learning and avoid exhaustion.

2.5. Availability of the libraries and quizzes

We tested the libraries using Jupyter Lab version 4.2 and Python 3.12 installed from Mac-
Ports. All libraries are available at MooersLab on GitHub for download.

3. Results
First, we describe the contents of the snippet libraries and the kinds of problems they solve.
We group the libraries into several categories to simplify their explanation. Second, we
describe the deployment of the snippet libraries for Voice In Plus (VIP).

3.1. Composition of the libraries

Our descriptions of these libraries include examples to illustrate how voice-triggered
snippets work with automated speech recognition software. Developers can leverage our
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libraries in two ways: by enhancing them with their unique commands or by using them as
blueprints to create libraries from scratch.

The libraries are made available in a modular format, so the user can select the most
valuable commands for their workflow. In general, our libraries are broad in scope, so they
meet the needs of most users. Several libraries are domain-specific. These domain-specific
libraries catalyze the creation of libraries tailored to other fields, sparking innovation and
expanding the reach of voice-triggered snippets.

We divided the contents of the libraries into two categories. One subset of libraries supports
dictating about science in the Markdown cells of Jupyter notebooks, while the other subsets
support writing scientific Python in code cells. You can also apply these voice-triggered
snippets to Markdown and code cells in Colab Notebooks. While some code, such as IPython
line and cell magics, is specific to Jupyter, you can use most voice-triggered snippets to edit
Markdown and Python files in Jupyter Lab.

Likewise, you can use these snippets in other browser-hosted text editors, such as the
web version of Visual Studio Code because Voice In Plus works in most text areas of web
browsers. You can use web services with ample text areas to draft documents and Python
scripts with the help of voice-triggered snippets. You can also use Voice In Plus inside text
boxes in local HTML files; however, Voice In Plus still requires an internet connection. You
can edit the code or text with an advanced text editor using the GhostText plugin to connect
a web-based text area to a text editor. Alternatively, you can save a draft document or script
to a file and import it into Jupyter Lab for further editing off line.

3.2. Libraries for Markdown cells

These libraries contain a short phrase paired with its replacement: another phrase or a
chunk of computer code. In analogy to a tab trigger in text editors, we call the first short
phrase a voice trigger. Tab triggers are initiated by typing the tab trigger, followed by the tab
key, which inserts the corresponding code snippet. Some text editors can autocomplete the
tab-trigger name, so these text editors require two tab key entries. The first tab auto-com-
pletes the tab-trigger name. Then, the second tab leads to the insertion of the corresponding
code. This two-step process of tab triggers empowers users with the flexibility to select a
different tab trigger before inserting the code, enhancing the customization potential of
text editors. It is important to note that voice triggers, while efficient, do not allow for the
revision of the voice trigger. In the event of an incorrect code insertion, the undo command
must be used, underscoring the need for caution when selecting voice triggers.

The most straightforward text replacements involved the replacement of English contrac-
tions with their expansions Figure 3. Science writers do not use English contractions in
formal writing for many reasons. Many automatic speech recognition software packages
will default to using contractions because the software’s audience is people who write
informally for social media, where English contractions are acceptable. Adding the library
that maps contractions to their expansions will insert the expansion whenever the contrac-
tion is spoken. This automated replacement of English contractions saves time during the
editing process.

We grouped the voice triggers by the first word of the voice trigger Table 1. This first word is
often a verb. For instance, the word ̀ expand’ is used before an acronym you want to replace
with its expansion. Your memory of the words represented by the letters in the acronym
often must be accurate. The library ensures that you use the correct expansion of the
acronym. By providing instant access to the correct acronym expansions, the library signif-
icantly reduces the time that would otherwise be spent on manual lookups, allowing you
to focus on your work. We have included acronyms widely used in Python programming,
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Figure 3.  Webpage of custom commands. The buttons are used to edit existing commands and add new
commands. Three English contractions and their expansions are shown.

scientific computing, data science, statistics, machine learning, and Bayesian data analysis.
These commands are found in domain-specific libraries, so users can select which voice
triggers to add to their private collection of voice commands.

The customized commands are listed alphabetically in the Voice-In Plus GUI, with one com-
mand and its corresponding text replacement per row. The prefixes group like commands
and, thereby, ease the manual lookup of the commands.

Some prefixes are two or more words long. For example, the compound prefix insert Python
aids the grouping of voice triggers by programming language.

Another example of a verb starting a voice trigger is the command display <equation name>.
This command is used in Markdown cells to insert equations in the display mode of LaTeX
in Markdown cells. For instance, the voice trigger display the electron density equation is
a testament to the convenience of our system, as shown in the transcript of a Zoom video
Figure 4. The image in the middle shows the text replacement as a LaTeX equation in the
display mode. This image is followed by the resulting Markdown cell after rendering by
running the cell.

Table 1.  Examples of voice commands with the prefix in bold that is used to group commands.

Voice commands

expand acronyms

the book title

email inserts list of e-mail addresses (e.g., email bayesian study group)

insert Python (e.g., insert Python for horizontal bar plot)

insert Markdown (e.g., insert Markdown header 3)

list (e.g., list font sizes in beamer slides.)

open webpage (e.g., open google scholar)

display insert equation in display mode (e.g., display electron density equation)

display with terms above plus list of terms and their definitions (e.g., display electron density
equation)

inline equation in-line (e.g., inline information entropy)

site insert corresponding citekey (e.g., site Jaynes 1957)
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Figure 4.  Three snapshots from a Zoom video of using the voice-trigger display electron density equa-
tion in a Markdown cell in a Jupyter notebook. A. The Zoom transcript showing the spoken voice trigger.
B. The text replacement in the form of a math equation written in LaTeX in display mode in the Markdown
cell. C. The rendered Markdown cell. The green and black tab on the right of each panel indicates that the
Voice In plugin is active and listening for speech.

Likewise, the command inline <equation name> is used to insert equations in prose sections
in Markdown cells. We have introduced voice-triggered snippet libraries for equations com-
monly used in machine learning and Bayesian data analysis https://github.com/MooersLab/.
You can use these equations as templates to generate new equations. While the development
of libraries is still in progress, they serve as flexible templates that you can adapt to your
domain.

Some voice triggers start with a noun. For example, the voice trigger URL is used to insert
URLs for essential websites.

Another example involves using the verb list in the voice trigger, as in list matplotlib
color codes, to generate a list of the color codes used in Matplotlib plots. These voice triggers
provide instant access to essential information, saving you the time and effort of manual
searches.

The markup language code is inserted using the verb insert, followed by the markup lan-
guage name and the name of the code. For example, the command insert markdown itemized
list will insert five vertically aligned dashes to start an itemized list. The command insert
latex itemized list will insert the corresponding code for an itemized list in LaTeX.

We have developed a library specifically for the flavor of Markdown utilized in Jupyter
notebooks. This library is used to insert the appropriate Markdown code in Markdown cells.
We have included a library for LaTeX because Jupyter Lab can edit tex files.

We have yet to figure out how to use voice commands to advance the cursor in a single
step to sites where edits should be made, analogous to tab stops in conventional snippets.
Instead, the built-in voice commands can move the cursor forward or backward and
select replacement words. We included the markup associated with the yasnippet snippet
libraries to serve as a benchmark for users to recognize the sites that should be considered
for modification to customize the snippet for their purpose.
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3.3. Libraries for code cells

The insert command in code-cell libraries allows the insertion of chunks of Python code,
enhancing your data science workflow. We avoid making voice commands for small code
fragments that might fit on a single line. An exception to this was the inclusion of a
collection of one-liners in the form of several kinds of comprehensions. As mentioned, we
have developed practical chunks of code designed to perform specific functions, making
your data analysis tasks more efficient. These chunks of code are functions that produce an
output item, such as a table or plot. The idea was to fill a code cell with the code required
to produce the desired output. Unfortunately, the user will still have to use the computer
mouse to move the cursor back over the code chunk and customize portions of the code
chunk as required.

While self-contained examples that utilize generated data can illustrate concepts, these
examples are frustrating for beginners who need to read actual data and would like to apply
the code example to their problem. Reading appropriately cleaned data is a common task
in data science and a common barrier to applying Jupyter notebooks to scientific problems.
Our data wrangling library provides code fragments that directly import various file types,
easing the task of data import and allowing focus on downstream utilization and analysis.

After the data are verified as correctly imported, exploring them by plotting them to detect
relationships between a model’s parameters and the output is often necessary. Our focus
on the versatile matplotlib library, which generates various plots, is designed to inspire cre-
ativity in data visualization and analysis [*matplotlib]. Our code fragments cover the most
commonly used plots, such as scatter plots, bar graphs (including horizontal bar graphs),
kernel density fitted distributions, heat Maps, pie charts, and contour plots. We include a
variety of examples for formatting tick marks and axis labels as well as the keys and the
form of the lines so users can use this information as templates to generate plots for their
purposes. Generating plots with lines of different shapes, whether solid, dashed, dotted, or
combinations thereof, is essential because plots generated with just color are vulnerable
to having their information compromised when printed in grayscale. Although we provide
some examples from higher-order plotting programs like seaborn [3], we focused on mat-
plotlib because most other plotting programs, except the interactive plotting programs, are
built on top of it.

We also support the import of external images. Images often play essential roles in the
stories told with Jupyter notebooks.

3.4. Jupyter specific library

We provide a library of 85 cell and line magics that facilitate the Jupyter notebook’s inter-
action with the rest of the operating system. Our cell magics, easily identifiable by their cell
magic prefix, and line magics, with the straightforward line magic prefix, are designed to
make the Jupyter notebook experience more intuitive. For example, the voice command
line majic run inserts %run. You use this command to run a script file Figure 5.

3.5. Interactive quiz

We developed a quiz to improve recall of the voice commands. These quizzes are interactive
and can be run in the terminal or in Jupyter notebooks Figure 5. The latter can store a record
of your performance on a quiz.

To build long-term recall of the commands, you must take the quiz five or more times on
alternate days, according to the principles of spaced repetition learning. These principles
were developed by the German psychologist Hermann Ebbinghaus near the end of the 19th
Centur and popularized in English his 1913 book Memory: A Contribution to Experimental
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Figure 5.  An example of an interactive session with a quiz in a Jupyter notebook. The code for running
the quiz was inserted into the code cell with the voice command run voice in quiz. The quiz covers a range
of voice commands, including [specific voice commands covered in the quiz].

Psychology. They have been validated several times by other researchers, including those
developed an algorithm for optimizing the spacing of the repetitions as function of the
probability of recall [4]. Spaced repetition learning is one of the most firmly established
results of research into human psychology.

Most people need discipline to carry out this kind of learning because they have to schedule
the time to do the follow-up sessions. Instead, people will find it more convenient to take
these quizzes several times in 20 minutes before they spend many hours utilizing the
commands. If that use occurs on subsequent days, then the recall will be reinforced and
retaking the quiz may not be necessary.

3.6. Limitations on using Voice In Plus

The plugin operates in text areas on thousands of web pages. These text areas include
those of web-based email software and online sites that support distraction-free writing
(e.g., Write Honey). These text areas also include the Markdown and code cells of Jupyter
notebooks and other web-based computational notebooks such as Colab Notebooks. Voice
In also works in plain text documents opened in Jupyter Lab for online writing.

Voice In Plus works in Jupyter Lite. It also works in streamlet-quill, which uses a Python
script to generate a text box in the default web browser. It also works in the web-based
version of VS Code.

Voice In will not work in desktop applications that support the editing of Jupyter notebooks,
such as the JupyterLab Desktop application, the nteract application, and external text
editors, such as VS Code, that support the editing of Jupyter notebooks. Likewise, Voice In
Plus will not work in Python Widgets. Voice In Plus is limited to web browsers, whereas
other automated speech recognition software can also operate in the terminal and at the
command prompt in GUI-driven applications.

Voice In Plus is very accurate, with a word error rate that is well below 10%. Like all
other dictation software, the word error rate depends on the quality of the microphone
used. Voice-In Plus can pick out words from among background ambient noise such as load
ventilation systems, traffic, and outdoor bird songs.

The language model used by Voice-In Plus is quite robust in that dictation can be performed
without an external microphone. We found no reduction in word error rate when using a
high-quality Yeti external microphone. Our experience might be a reflection of our high-
end hardware and may not transfer to low-end computers.
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Because of the way Voice-In Plus is set up to utilize the Speech-to-Text feature of the Google
API, there is not much of a latency issue. The spoken words’ transcriptions occur nearly in
real-time; there is only a minor lag. Voice In Plus will listen for words for 3 minutes before
automatically shutting down. Voice In Plus can generally keep up with dictation occurring
at a moderate pace for at least several paragraphs, whereas competing dictation software
packages tend to quit after one paragraph. The program hallucinates when the dictation
has occurred at high speed because the transcription has fallen behind. You have to pay
attention to the progress of the transcription if you want all of your spoken words captured.
If the transcription halts, it is best to deactivate the plugin, activate it, and resume the
dictation.

Pronounce the first word of each sentence loudly so that they are recorded. Otherwise, the
first words of your sentences will be skipped. This problem of omitted words is most acute
when there has been a pause in the dictation.

The software does not automatically insert punctuation marks. You have to vocalize the
name of the punctuation mark where it is required. You also have to utilize the built-in new-
line command to start new lines. We have combined the period command with the new line
command to create a new command with the voice trigger of new sentence.

You have to develop the habit of using this command if you like to write one sentence per
line. This latter form of writing is helpful for first drafts because it eases the shuffling of
sentences in a text editor during rewriting. This form of writing is also compatible with
version control systems like git, which track changes by line number.

The practical limit on the number of commands is set by the trouble you will tolerate when
scrolling up and down the list of commands. We had an easy time scrolling through a library
of about 8,000 commands and a hard time with a library of about 19,000 commands. Bulk
deletion of selected commands required assistance from the user support at Dictanote Inc.
They removed our bloated library, and we used the bulk add button in the GUI to upload a
smaller version of our library.

4. Discussion
The following four discussion points can enhance understanding the use of Voice-In Plus
with Jupyter.

4.1. Independence from breaking changes in Jupyter

The Jupyter project lacks built-in support for libraries of code snippets. Developing third-
party extensions is not just a choice but a crucial necessity to support using code snippets in
the Jupyter environment. Unfortunately, changes in the core of Jupyter occasionally break
these third-party extensions. Users are burdened with the task of creating Python environ-
ments for older versions of Jupyter to work with their favorite outdated snippet extension,
all the while missing out on the new features of Jupyter. An obvious solution to this problem
would be for the Jupyter developers to incorporate one of the snippet extensions into the
base distribution of Jupyter to ensure that at least one form of support for snippets is always
available. Using voice-triggered snippets external to Jupyter side steps the disruption of
snippet extensions by breaking changes in new versions of Jupyter.

4.2. Voice-triggered snippets can complement AI-assisted voice computing

The use of voice-triggered snippets requires knowledge of the code that you want to insert.
The act of acquiring this knowledge is the up-front cost that the user pays to gain access
to quickly inserted code snippets that work. In contrast, AI coding assistants can find
code that you do not know about to solve the problem described in your prompt. From
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personal experience, the retrieval of the correct code can take multiple iterations of refining
the prompt. Expert prompt engineers will find the correct code in several minutes while
beginners may take much longer. An area of future research is to use AI assistants that have
large language models indexed on snippet libraries to retrieve the correct voice-triggered
snippet.

4.3. Comparision with automated speech recogination extensions for Jupyter lab

We found three extensions developed for Jupyter Lab that enable speech recognition
in Jupyter notebooks. The first, jupyterlab-voice-control, supports custom commands and
relies on the browser’s language model. However, it is important to note that this extension
is experimental and does not currently work with Jupyter 4.2. The second extension,
jupyter-voice-comments, relies on the DaVinci large language model to make comments
in Markdown cells and request code fragments. This program requires clicking on a
microphone icon frequently, which makes the user vulnerable to repetitive stress injuries.
The third extension, jupyter-voicepilot, is designed to provide a unique voice control expe-
rience. Although the extension’s name suggests it uses GitHub’s Copilot, it uses whisper-1
and ChatGPT3. This extension requires an API key for ChatGPT3. The robustness of our
approach is that the Voice-In Plus should work in all browser-based versions of Jupyter Lab
and Jupyter Notebook.

4.4. Coping with the imperfections of the language model

One of the most significant challenges in speech-to-text technology is the occurrence of
persistent errors in transcription. These persistent errors may be due to the language
model having difficulties interpreting your speech. For example, the language model often
misinterprets the word write as right’. Likewise, the letter R is frequently returned as are
or our’. It’s crucial to have a remedy for these situations, which involves mapping the
misinterpreted phrase to the intended phrase.

This remedy might be the best that can be done for those users who are from a country that
is not represented by the selection of English dialects available in Voice In Plus. People from
Eastern Europe, the Middle East, and Northeast Asia fall into this category. Users in this
situation may have to add several hundred text replacements. As the customized library of
text replacements grows, the frequency of wrong word insertions should decrease signifi-
cantly, offering hope for improved accuracy in your speech-to-text transcriptions.

5. Future directions
Our future directions include building out the libraries of voice-triggered snippets. Another
direction includes the development of voice stops analogous to tab stops in code snippets
for advanced text editors. The cursor would advance to the site of the next voice stop that
you should consider editing to customize the code snippet for the project at hand. Another
related advancement would be the concept of mirroring the parameter values at identical
voice stops, similar to the functionality of mirrored tab stops in conventional snippets.
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Abstract

Histopathological images, which are digitized images of human or animal tissue, contain
insights into disease state. Typically, a pathologist will look at a slide under a microscope
to make decisions about prognosis and treatment. Due to the high complexity of the data,
applying automatic image analysis is challenging. Often, human intervention in the form of
manual annotation or quality control (QC) is required. Additionally, the data itself varies con-
siderably in available features, size, and shape. Thus, a streamlined and interactive approach
is a necessary part of any digital pathology pipeline. We present PredX-Tools, a suite of simple
and easy to use python GUI applications which facilitate analysis of histopathological images
and provide a no-code platform for data scientists and researchers to perform analysis on
raw and transformed data.

Keywords digital pathology, brightfield, multiplex immunofluorescence, point process

1. Introduction
Histopathological image analysis reveals insights into disease state and has potential to
harness the immensely complex and heterogeneous tumor microenvironment to guide un!
derstanding of disease progression, response to treatment, and aid in patient stratification
for clinical trials [1], [2], [3], [4], [5]. However, applying automatic image analysis routines
continues to be challenging [6], [7]. Often, human intervention in the form of manual anno!
tation or quality control (QC) is required. Additionally, the data itself varies considerably in
available features, size, and shape. For example, the available biomarkers vary in quantity
between datasets, with some having only a few channels and others having hundreds or
more. Images vary from small core samples (∼1 MB) to massive whole slides images (∼
100 GB). Some datasets may contain data of multiple types with additional considerations
for aligning the data to a common reference frame. Thus, a streamlined and interactive
approach is a necessary part of any digital pathology pipeline [8].

We present PredX!Tools, a suite of simple and easy to use python GUI applications which
facilitate all parts of a digital pathology pipeline, from image QC and labeling to visualiza!
tion and analysis of results to allow for a deeper understanding of the data. By utilizing
open!source python libraries and utilities, we have created a suite of tools that fit seamlessly
into our analysis pipeline, require minimal expertise to run, and are easy to develop new
features for, to account for the ever!changing landscape of histopathological image analysis.

2. Background
Raw data takes the form of multi!channel images, ranging in depth from 3 channels (RGB)
up to several hundreds or even thousands. Although specifics of the routine vary depending

July 10, 2024 106

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/YCFW5807
https://orcid.org/0000-0002-9629-1409
https://orcid.org/0000-0002-9629-1409
mailto:brian.falkenstein@predxbio.com
mailto:brian.falkenstein@predxbio.com
https://orcid.org/0000-0002-8916-6335
https://orcid.org/0000-0002-8916-6335
mailto:shannon.quinn@predxbio.com
mailto:shannon.quinn@predxbio.com
https://orcid.org/0000-0002-0024-1627
https://orcid.org/0000-0002-0024-1627
mailto:chakra@predxbio.com
mailto:chakra@predxbio.com
https://orcid.org/0000-0002-2283-4968
https://orcid.org/0000-0002-2283-4968
mailto:filippo@predxbio.com
mailto:filippo@predxbio.com
mailto:raymond.yan@predxbio.com
mailto:raymond.yan@predxbio.com
mailto:brian.falkenstein@predxbio.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Predx-Tools: Dispelling the Mystery in Histopathological Image Processing  | Falkenstein et al.,
2024

on the available data and the underlying biological questions, every experiment follows a
similar procedure. Images must be registered, normalized, and denoised by a data scientist.
Registration is the process of aligning subsequent sections of tissue in space via rotation and
translation or affine transformation to match keypoints between images. Then, a researcher
performs nuclei and or cell segmentation, where each nuclear and cellular object has a
boundary automatically drawn around it. Additionally, other objects in the images may be
segmented, such as tumor beds or other biological structures present in the image. Next,
features are extracted for the segmented objects and stored in data tables. Common cell
level features include a measurement of biomarker strength within the cell boundaries,
or morphological measurements about the cell object like its area or ellipticity. Finally,
these tables of features, which include the spatial location of the objects, may be analyzed
by machine learning scientists to derive answers to mechanistic questions or to find differ!
ences between populations.

While there have been attempts at fully automating this procedure, it is nearly impossible
to design routines that can account for all forms of variation across datasets. As an
example, expected size of a cell may vary wildly between different types of cancer, and thus
having one threshold for calling a cell ‘large’ or ‘small’ is challenging. Thus, for optimal
performance on new data, it is ideal to have a human!in!the!loop to perform manual QC,
parameter tuning, and probing of the data to mitigate the error that arises when performing
analysis on new datasets. This leads to a higher confidence in any results that may be found.
To facilitate this, simple and easy to use tools must be developed to allow field experts to
interact with the data with minimal effort. Oftentimes users may not be comfortable or
familiar with programming, and thus it is far more efficient to design no!code interactive
environments to facilitate interaction with the data for non!coding domain experts.

Other tools have been developed to address these needs (see Table 1), however none cover
all our needs and many are rigid and allow custom integration only through script writing.
There is a need for a stripped down suite of modular solutions that both fits specifically
our needs for analysis, while also being modular and easy to develop to fit arising needs
and challenges that come with new data. Hence, we have developed our own in!house suite
of solutions that allows an expert user to plug directly into our highly complex analysis
pipelines, both to check quality of generated results and allow deeper exploration of the
data. More specifically, we are addressing 4 separate needs required in our analysis routine.
First, we provide an environment for gathering ground truth labels from an expert with
CellLabeler. Second, we provide a simple hub for analyzing the quality of raw and pre!
processed image data with PixelExplorer. Third, we created CellExplorer for visualizing data
tables of cellular object features and phenotypes, as well as the ability to fit models and
export modified versions of the data tables. Last, a simple and easy to use app for perform!
ing complex spatial analysis of the cellular or nuclear objects is provided in SpaceExplorer.
All apps were created with PySimpleGUI [9], alongside other open source python libraries
Matplotlib [10], NumPy [11], pandas [12], [13], scikit!learn [14], [15], SciPy [16], Tifffile [17],
and zarr [18].

3. CellLabeler
We introduce CellLabeler, a flexible and easy to configure GUI application for the purpose
of gathering expert annotations on histopathological image data. One common issue in the
space of histopathological image analysis is the lack of labeled datasets. Due to the wide
heterogeneity of the data, it is often the case that the existing labeled datasets are useless
for the dataset in question. For example, current analysis may be focused on a panel of bio!
markers that are unique from any labeled dataset in the public domain. Alternatively, one
may be working with a tissue or disease type that has little or no representation in public
domain datasets. Thus, it proves useful to have a tool to quickly and efficiently provide
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Software View Raw Label Pixel
analysis

Mask gen�
eration

Pheno�
typing

Spatial
analysis

Easy de�
velop�
ment

Fiji [19] Yes* Yes Yes Yes No No Yes

QuPath [20] Yes Yes Yes Yes Yes No Yes

CellProfiler
[21]

Yes* No Yes Yes Yes Yes Yes

Ilastik
[22]

Yes* Yes Yes Yes Yes No No

Predx�
Tools

Yes Yes Yes Yes Yes Yes Yes

Table 1.  Comparison of available softwares.

“*” = Limitation on image size

labels to new data to be used for either quality control purposes (labeling a segmentation
as good or bad) or for training a machine learning algorithm (labeling a cell by its type).

A configuration json file must be created for each project. Within the configuration file,
the user specifies the possible labels that can be assigned to each object, the type of image
data (RGB or N!stack) and which channels to show by default (N!stack only). The input data
consists of cropped images of each object to be labeled, as well as an optional list of marker
names in the image (N!stack only).

Once the experiment has begun and the data is loaded, the user will be shown an image and
is asked to provide a label. The potential labels are listed in a table, and can be clicked to
assign that label to the current image. To enable faster assignment of labels, the number pad
may also be used to assign labels. The user can also take time to modify which biomarkers
are being displayed, as well as which color each biomarker is assigned to (N!stack only).
By default, the object to be labeled has its boundary drawn on the image, however this can
be toggled on and off. Once a label has been assigned to the current image, the user can
either click next or use the right arrow to navigate to the next image (similarly, left arrow
or back to navigate to the previous labeled image). After each step, a simple save file is
generated which tracks the labeled objects, and thus progress is never lost. It is simple to
load a previously saved project to pick up where you left off. This provides a simple and
easy to use app for gathering labels for objects for the purposes of training an algorithm or
performing QC.

Figure 1.  The interface for CellLabeler.
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4. PixelExplorer
We have also created PixelExplorer as a way to quickly perform basic analysis on pixel level
data in raw or pre!processed histopathological datasets. Analyzing biomarker distributions
and fitting models is a crucial step of preprocessing and quality control of histopathological
imaging data. In brightfield imaging, one may want to analyze the distribution of raw RGB
signals before and after normalization or stain deconvolution, where the individual stains
are separated out from the RGB into separate channels. In mIF or IMC data, it is crucial to
understand the behavior and dynamic range of the various biomarkers and how they are
affected by normalization and noise reduction methods.

The input data for PixelExplorer is simply a folder containing the .tif (or any other open
source microscopy image format, such as .ome.tif, .svs, etc.) files to be analyzed, as well as
a CSV file containing the names of the channels in the image (if not specified in the image
metadata). With this, the user can quickly iterate through a set of tasks crucial to the pre!
processing and QC pipeline.

Once the experiment begins, the user will first select one or more of the available images
provided in the data folder. Next, selecting from the list of available biomarkers will popu!
late the histogram in the center of the screen. The histogram can have its parameters easily
tweaked, such as setting ranges of the x axis, number of bins, log of the y axis, or density
plot. Additionally, the user can choose to hide pixel values above or below a threshold.
The subsample rate of pixels can be adjusted to balance the tradeoff between runtime and
accuracy (for larger images, it may take several seconds to sample the pixels and plot them).

Further, any arbitrary transformation can be performed on the raw pixel values before
plotting them. By default, a log2 transform is applied to transform the data from range [1,
2^16] to [0, 16]. However, any valid line of python code can be added to the ‘Data transfor!
mations’ tab to be applied to the data prior to plotting. This can be helpful to visualize the
effect different transformations have on the underlying distribution.

Additionally, one can fit a Gaussian Mixture Model to the current distribution using the right
panel by simply specifying the number of mixture components and pressing enter. This will
fit a model to the data being plotted, meaning the model will be fit to the data after the
transformation is applied and after any pixels above or below the desired thresholds are
removed. This tool is very useful due to the fact that biomarker distributions in the log space
can be effectively modeled by a mixture of gaussians [23], [24]. With this, one may derive
a model for ‘foreground’ and ‘background’ signals of the images. With this knowledge, the
user may want to generate a ‘foreground’ or ‘background’ mask using the Thresholding
function available in the app. The user can type in a value, select whether to threshold
above or below the value, and then export a binary mask which is 1 for pixels that pass the
threshold and 0 elsewhere. This mask may then be used in downstream analysis, where they
may be used to focus on parts of the image which may exhibit certain behavior (e.g. thresh!
olding Ki67, a biomarker which measure cellular proliferation or reproduction, which may
be associated with tumoral regions). While these masks may be derived automatically, it
may be desirable to define one by thresholding manually.

With PixelExplorer, the user obtains a better understanding of the biomarker signal behav!
ior, how it has responded to the various preprocessing steps in the backend pipeline, and
can fit models and derive thresholds for further downstream analysis.

5. CellExplorer
To address the need of quickly analyzing tabular data of cell features, we developed CellEx!
plorer, another GUI which allows for fast and flexible basic analysis of nuclear or cellular
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Figure 2.  The interface for PixelExplorer.

feature tables. After the preprocessing and feature extraction pipelines are complete, what
remains is one CSV file per image, each containing cell level features. These features may
contain information about the object shape and morphology (H&E, IHC) or a measure of the
biomarker signal (mIF, IMC). With these feature tables as input, several types of analysis
are available using the CellExplorer GUI. CellExplorer requires as input a folder containing
all of the CSV files to be analyzed. The CSV files contain rows of cellular features. Similar to
PixelExplorer, when the app launches, the user will select one or more patient samples and
a feature column to begin visualizing the distributions. The histogram visualization has the
same controls as those found in PixelExplorer. Additionally, the user can define thresholds
on the features and view counts or ratios of positive cells or nuclei. Thresholded phenotypes
can then be exported as new columns in the CSV input files. Again, a Gaussian Mixture
Model can be fit to the current distribution.

CellExplorer also contains some additional features more useful in the context of analyzing
cellular data, as opposed to pixel data. These features are gated behind popup windows,
accessed via buttons at the bottom of the screen (Figure 4). This is to allow the main panel
of the GUI to be more streamlined and simple, and the more advanced analysis methods
hidden in popups. This also allows for modular programming design, allowing different
modules to be developed and deployed as new popup windows. Phenotypes may be a part
of the input data (columns in the CSV with ‘Positive’ in the name), or may be generated
as previously mentioned. These phenotypes can be selected and shown as a pie chart to
view relative frequencies of the phenotypes. Phenotypes may be generated using multiple
features.

6. SpaceExplorer
After cells have been assigned a phenotype label, it is advantageous to analyze the spatial
composition of the cell types. This involves quantifying the degree with which the cells
cluster together or repel each other relative to some background distribution. That is, we
may discover that tumor cells are clustered tightly together with other tumor cells, or
that immune cells may be surrounded by many tumor cells, but few other immune cells.
These spatial relationships reveal the underlying mechanisms driving the tumor microen!
vironment [2]. However, biomarker panels may include a large number of biomarkers, and
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Figure 3.  The interface for CellExplorer.

Figure 4.  An example of a popup window in CellExplorer. This interface allows for bivariate plots of the
biomarker values.

parsing the magnitude of statistics generated by pairwise analysis can be cumbersome.
Thus, there is a need for a fast and interactive way of viewing and analyzing the various
spatial statistics that can reveal insights into the tumor microenvironment.

To this end, we have created SpaceExplorer to enable a user to quickly generate a variety of
spatial statistics on singular phenotypes or pairs of phenotypes, and to generate high quality
figures. Specifically, SpaceExplorer functions similarly to CellExplorer, in that it reads as
input a CSV file, this time containing binary assignments of phenotypes for each cell. That
is, each row corresponds to a cell, and each column says whether that cell is positive or
negative for that phenotype (IE tumor cell, T cell, etc.).

Once the data is read in, the user has a few options to explore. The user may select from
the samples list one or more samples to compute scores for. Then, the user may select 1 or
2 cell types to perform spatial point!pattern analysis on. This analysis attempts to describe
the clustering or dispersing behavior of events relative to a random point pattern, and has
shown promise in other fields for describing spatial distributions of events [25], [26], [27].

Additional analysis methods include the pointwise mutual information [28], which analyzes
the probability that two events co!occur (in this case, 2 cell types being spatially close
together) relative to a background distribution, as well as the spatial neighbors enrichment
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analysis, which performs permutation tests and computes z!scores to assign a score for how
often 2 events are co!occurring [29].

7. Conclusion
Here we have described Predx!Tools, our suite of easy to use and flexible GUI applications
for interfacing with histopathological image data at various stages of processing. We
developed these tools to fit the needs that arose from working with a large variety of
histopathological datasets and understanding the variability that must be accounted for.
These tools improve workflows and allow for a deeper understanding of the complex data.
All tools were built with python and open!source python libraries.
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Abstract

This article demonstrates practical approaches to fully type-hinting generic NumPy arrays
and StaticFrame DataFrames, and shows how the same annotations can improve code quality
with both static analysis and runtime validation.

Keywords typing, static analysis, runtime validation, variadic generics

As tools for Python type annotations (or hints) have evolved, more complex data structures
can be typed, improving maintainability and static analysis. Arrays and DataFrames, as
complex containers, have only recently supported complete type annotations in Python.
NumPy [1] 1.22 introduced generic specification of arrays and dtypes. Building on NumPy’s
foundation, StaticFrame [2] 2.0 introduced complete type specification of DataFrames,
employing NumPy primitives and variadic generics. This article demonstrates practical
approaches to fully type-hinting arrays and DataFrames, and shows how the same annota-
tions can improve code quality with both static analysis and runtime validation.

1. Type Hints Improve Code Quality
Type hints [3] improve code quality in a number of ways. Instead of using variable names
or comments to communicate types, Python-object-based type annotations provide main-
tainable and expressive tools for type specification. These type annotations can be tested
with type checkers such as mypy [4] or pyright [5], quickly discovering potential bugs without
executing code.

The same annotations can be used for runtime validation. While reliance on duck-typing
over runtime validation is common in Python, runtime validation is more often needed
with complex data structures such as arrays and DataFrames. For example, an interface
expecting a DataFrame argument, if given a Series, might not need explicit validation as
usage of the wrong type will likely raise. However, an interface expecting a 2D array of
floats, if given an array of Booleans, might benefit from validation as usage of the wrong
type may not raise.

Many important typing utilities are only available with the most-recent versions of Python.
Fortunately, the typing-extensions [6] package back-ports standard library utilities for older
versions of Python. A related challenge is that type checkers can take time to implement
full support for new features: many of the examples shown here require mypy 1.9.0, released
just a few months ago.

2. Elemental Type Annotations
Without type annotations, a Python function signature gives no indication of the expected
types. For example, the function below might take and return any types:
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def process0(v, q): ... # no type information

By adding type annotations, the signature informs readers of the expected types. With mod-
ern Python, user-defined and built-in classes can be used to specify types, with additional
resources (such as Any, Iterator, cast(), and Annotated) found in the standard library typing
module. For example, the interface below improves the one above by making expected
types explicit:

def process0(v: int, q: bool) -> list[float]: ...

When used with a type checker like mypy, code that violates the specifications of the type
annotations will raise an error during static analysis (shown as comments, below). For
example, providing an integer when a Boolean is required is an error:

x = process0(v=5, q=20)
# tp.py: error: Argument "q" to "process0"
# has incompatible type "int"; expected "bool"  [arg-type]

Static analysis can only validate statically defined types. The full range of runtime inputs
and outputs is often more diverse, suggesting some form of runtime validation. The best
of both worlds is possible by reusing type annotations for runtime validation. While there
are libraries that do this (e.g., typeguard and beartype), StaticFrame offers CallGuard, a tool
specialized for comprehensive array and DataFrame type-annotation validation.

A Python decorator is ideal for leveraging annotations for runtime validation. CallGuard
offers two decorators: @CallGuard.check, which raises an informative Exception on error, or
@CallGuard.warn, which issues a warning.

Further extending the process0 function above with @CallGuard.check, the same type annota-
tions can be used to raise an Exception (shown again as comments) when runtime objects
violate the requirements of the type annotations:

import static_frame as sf

@sf.CallGuard.check
def process0(v: int, q: bool) -> list[float]:
    return [x * (0.5 if q else 0.25) for x in range(v)]

z = process0(v=5, q=20)
# static_frame.core.type_clinic.ClinicError:
# In args of (v: int, q: bool) -> list[float]
# └── Expected bool, provided int invalid

While type annotations must be valid Python, they are irrelevant at runtime and can be
wrong: it is possible to have correctly verified types that do not reflect runtime reality. As
shown above, reusing type annotations for runtime checks ensures annotations are valid.

3. Array Type Annotations
Python classes that permit component type specification are “generic”. Component types
are specified with positional “type variables”. A list of integers, for example, is annotated
with list[int]; a dictionary of floats keyed by tuples of integers and strings is annotated
dict[tuple[int, str], float].
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With NumPy 1.20, ndarray and dtype become generic. The generic ndarray requires two argu-
ments, a shape and a dtype. As the usage of the first argument is still under development,
Any is commonly used. The second argument, dtype, is itself a generic that requires a type
variable for a NumPy type such as np.int64. NumPy also offers more general generic types
such as np.integer[Any].

For example, an array of Booleans is annotated np.ndarray[Any, np.dtype[np.bool_]]; an
array of any type of integer is annotated np.ndarray[Any, np.dtype[np.integer[Any]]].

As generic annotations with component type specifications can become verbose, it is prac-
tical to store them as type aliases (here prefixed with “T”). The following function specifies
such aliases and then uses them in a function.

from typing import Any
import numpy as np

TNDArrayInt8 = np.ndarray[Any, np.dtype[np.int8]]
TNDArrayBool = np.ndarray[Any, np.dtype[np.bool_]]
TNDArrayFloat64 = np.ndarray[Any, np.dtype[np.float64]]

def process1(
        v: TNDArrayInt8,
        q: TNDArrayBool,
        ) -> TNDArrayFloat64:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

As before, when used with mypy, code that violates the type annotations will raise an error
during static analysis. For example, providing an integer when a Boolean is required is an
error:

v1: TNDArrayInt8 = np.arange(20, dtype=np.int8)
x = process1(v1, v1)
# tp.py: error: Argument 2 to "process1" has incompatible type
# "ndarray[Any, dtype[floating[_64Bit]]]"; expected "ndarray[Any, dtype[bool_]]"  [arg-type]

The interface requires 8-bit signed integers (np.int8); attempting to use a different sized
integer is also an error:

TNDArrayInt64 = np.ndarray[Any, np.dtype[np.int64]]
v2: TNDArrayInt64 = np.arange(20, dtype=np.int64)
q: TNDArrayBool = np.arange(20) % 3 == 0
x = process1(v2, q)
# tp.py: error: Argument 1 to "process1" has incompatible type
# "ndarray[Any, dtype[signedinteger[_64Bit]]]"; expected "ndarray[Any,
dtype[signedinteger[_8Bit]]]"  [arg-type]

While some interfaces might benefit from such narrow numeric type specifications,
broader specification is possible with NumPy’s generic types such as np.integer[Any],
np.signedinteger[Any], np.float[Any], etc. For example, we can define a new function that
accepts any size signed integer. Static analysis now passes with both TNDArrayInt8 and
TNDArrayInt64 arrays.
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TNDArrayIntAny = np.ndarray[Any, np.dtype[np.signedinteger[Any]]]
def process2(
        v: TNDArrayIntAny, # a more flexible interface
        q: TNDArrayBool,
        ) -> TNDArrayFloat64:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

x = process2(v1, q) # no mypy error
x = process2(v2, q) # no mypy error

Just as shown above with elements, generically specified NumPy arrays can be validated at
runtime if decorated with CallGuard.check:

@sf.CallGuard.check
def process3(v: TNDArrayIntAny, q: TNDArrayBool) -> TNDArrayFloat64:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

x = process3(v1, q) # no error, same as mypy
x = process3(v2, q) # no error, same as mypy
v3: TNDArrayFloat64 = np.arange(20, dtype=np.float64) * 0.5
x = process3(v3, q) # error
# static_frame.core.type_clinic.ClinicError:
# In args of (v: ndarray[Any, dtype[signedinteger[Any]]],
# q: ndarray[Any, dtype[bool_]]) -> ndarray[Any, dtype[float64]]
# └── ndarray[Any, dtype[signedinteger[Any]]]
#     └── dtype[signedinteger[Any]]
#         └── Expected signedinteger, provided float64 invalid

StaticFrame provides utilities to extend runtime validation beyond type checking. Using
the typing module’s Annotated class [7], we can extend the type specification with one or
more StaticFrame Require objects. For example, to validate that an array has a 1D shape of
(24,), we can replace TNDArrayIntAny with Annotated[TNDArrayIntAny, sf.Require.Shape(24)].
To validate that a float array has no NaNs, we can replace TNDArrayFloat64 with
Annotated[TNDArrayFloat64, sf.Require.Apply(lambda a: ~a.insna().any())].

Implementing a new function, we can require that all input and output arrays have the
shape (24,). Calling this function with the previously created arrays raises an error:

from typing import Annotated

@sf.CallGuard.check
def process4(
        v: Annotated[TNDArrayIntAny, sf.Require.Shape(24)],
        q: Annotated[TNDArrayBool, sf.Require.Shape(24)],
        ) -> Annotated[TNDArrayFloat64, sf.Require.Shape(24)]:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

x = process4(v1, q) # types pass, but Require.Shape fails
# static_frame.core.type_clinic.ClinicError:
# In args of (v: Annotated[ndarray[Any, dtype[int8]], Shape((24,))], q: Annotated[ndarray[Any,
dtype[bool_]], Shape((24,))]) -> Annotated[ndarray[Any, dtype[float64]], Shape((24,))]
# └── Annotated[ndarray[Any, dtype[int8]], Shape((24,))]
#     └── Shape((24,))
#         └── Expected shape ((24,)), provided shape (20,)

4. DataFrame Type Annotations
Just like a dictionary, a DataFrame is a complex data structure composed of many compo-
nent types: the index labels, column labels, and the column values are all distinct types.
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A challenge of generically specifying a DataFrame is that a DataFrame has a variable
number of columns, where each column might be a different type. The Python TypeVarTuple
variadic generic specifier [8], first released in Python 3.11, permits defining a variable
number of column type variables.

With StaticFrame 2.0, Frame, Series, Index and related containers become generic. Support
for variable column type definitions is provided by TypeVarTuple, back-ported with the
implementation in typing-extensions for compatibility down to Python 3.9.

A generic Frame requires two or more type variables: the type of the index, the type of the
columns, and zero or more specifications of columnar value types specified with NumPy
types. A generic Series requires two type variables: the type of the index and a NumPy type
for the values. The Index is itself generic, also requiring a NumPy type as a type variable.

With generic specification, a Series of floats, indexed by dates, can be annotated with
sf.Series[sf.IndexDate, np.float64]. A Frame with dates as index labels, strings as column la-
bels, and column values of integers and floats can be annotated with sf.Frame[sf.IndexDate,
sf.Index[np.str_], np.int64, np.float64].

Given a complex Frame, deriving the annotation might be difficult. StaticFrame offers the
via_type_clinic interface to provide a complete generic specification for any component at
runtime:

>>> v4 = sf.Frame.from_fields([range(5), np.arange(3, 8) * 0.5],
columns=('a', 'b'), index=sf.IndexDate.from_date_range('2021-12-30', '2022-01-03'))
>>> v4
<Frame>
<Index>         a       b         <<U1>
<IndexDate>
2021-12-30      0       1.5
2021-12-31      1       2.0
2022-01-01      2       2.5
2022-01-02      3       3.0
2022-01-03      4       3.5
<datetime64[D]> <int64> <float64>

# get a string representation of the annotation
>>> v4.via_type_clinic
Frame[IndexDate, Index[str_], int64, float64]

As shown with arrays, storing annotations as type aliases permits reuse and more concise
function signatures. Below, a new function is defined with generic Frame and Series argu-
ments fully annotated. A cast is required as not all operations can statically resolve their
return type.

TFrameDateInts = sf.Frame[sf.IndexDate, sf.Index[np.str_], np.int64, np.int64]
TSeriesYMBool = sf.Series[sf.IndexYearMonth, np.bool_]
TSeriesDFloat = sf.Series[sf.IndexDate, np.float64]

def process5(v: TFrameDateInts, q: TSeriesYMBool) -> TSeriesDFloat:
    t = v.index.iter_label().apply(lambda l: q[l.astype('datetime64[M]')]) # type: ignore
    s = np.where(t, 0.5, 0.25)
    return cast(TSeriesDFloat, (v.via_T * s).mean(axis=1))

These more complex annotated interfaces can also be validated with mypy. Below, a Frame
without the expected column value types is passed, causing mypy to error (shown as com-
ments, below).
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TFrameDateIntFloat = sf.Frame[sf.IndexDate, sf.Index[np.str_], np.int64, np.float64]
v5: TFrameDateIntFloat = sf.Frame.from_fields([range(5), np.arange(3, 8) * 0.5],
columns=('a', 'b'), index=sf.IndexDate.from_date_range('2021-12-30', '2022-01-03'))

q: TSeriesYMBool = sf.Series([True, False],
index=sf.IndexYearMonth.from_date_range('2021-12', '2022-01'))

x = process5(v5, q)
# tp.py: error: Argument 1 to "process5" has incompatible type
# "Frame[IndexDate, Index[str_], signedinteger[_64Bit], floating[_64Bit]]"; expected
# "Frame[IndexDate, Index[str_], signedinteger[_64Bit], signedinteger[_64Bit]]"  [arg-type]

To use the same type hints for runtime validation, the sf.CallGuard.check decorator can be
applied. Below, a Frame of three integer columns is provided where a Frame of two columns
is expected.

# a Frame of three columns of integers
TFrameDateIntIntInt = sf.Frame[sf.IndexDate, sf.Index[np.str_], np.int64, np.int64, np.int64]
v6: TFrameDateIntIntInt = sf.Frame.from_fields([range(5), range(3, 8), range(1, 6)],
columns=('a', 'b', 'c'), index=sf.IndexDate.from_date_range('2021-12-30', '2022-01-03'))

x = process5(v6, q)
# static_frame.core.type_clinic.ClinicError:
# In args of (v: Frame[IndexDate, Index[str_], signedinteger[_64Bit], signedinteger[_64Bit]],
# q: Series[IndexYearMonth, bool_]) -> Series[IndexDate, float64]
# └── Frame[IndexDate, Index[str_], signedinteger[_64Bit], signedinteger[_64Bit]]
#     └── Expected Frame has 2 dtype, provided Frame has 3 dtype

It might not be practical to annotate every column of every Frame: it is common for inter-
faces to work with Frame of variable column sizes. TypeVarTuple supports this through the
usage of unpack operator *tuple[] expressions (introduced in Python 3.11, back-ported
with the Unpack annotation). For example, the function above could be defined to take
any number of integer columns with that annotation Frame[IndexDate, Index[np.str_],
*tuple[np.int64, ...]], where *tuple[np.int64, ...]] means zero or more integer columns.

The same implementation can be annotated with a far more general specification of colum-
nar types. Below, the column values are annotated with np.number[Any] (permitting any type
of numeric NumPy type) and a *tuple[] expression (permitting any number of columns):
*tuple[np.number[Any], ...]. Now neither mypy nor CallGuard errors with either previously
created Frame.

TFrameDateNums = sf.Frame[sf.IndexDate, sf.Index[np.str_], *tuple[np.number[Any], ...]]

@sf.CallGuard.check
def process6(v: TFrameDateNums, q: TSeriesYMBool) -> TSeriesDFloat:
    t = v.index.iter_label().apply(lambda l: q[l.astype('datetime64[M]')]) # type: ignore
    s = np.where(t, 0.5, 0.25)
    return tp.cast(TSeriesDFloat, (v.via_T * s).mean(axis=1))

x = process6(v5, q) # a Frame with integer, float columns passes
x = process6(v6, q) # a Frame with three integer columns passes

As with NumPy arrays, Frame annotations can wrap Require specifications in Annotated
generics, permitting the definition of additional run-time validations.

5. Type Annotations with Other Libraries
While StaticFrame might be the first DataFrame library to offer complete generic specifica-
tion and a unified solution for both static type analysis and run-time type validation, other
array and DataFrame libraries offer related utilities.
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Neither the Tensor class in PyTorch (2.4.0), nor the Tensor class in TensorFlow (2.17.0) support
generic type or shape specification. While both libraries offer a TensorSpec object that can
be used to perform run-time type and shape validation, static type checking with tools like
mypy is not supported.

As of Pandas 2.2.2, neither the Pandas Series nor DataFrame support generic type specifica-
tions. A number of third-party packages have offered partial solutions. The pandas-stubs
library, for example, provides type annotations for the Pandas API, but does not make the
Series or DataFrame classes generic. The pandera library [9] permits defining DataFrameSchema
classes that can be used for run-time validation of Pandas DataFrames. For static-analysis
with mypy, pandera offers alternative DataFrame and Series subclasses that permit generic
specification with the same DataFrameSchema classes. This approach does not permit the ex-
pressive opportunities of using generic NumPy types or the unpack operator for supplying
variadic generic expressions.

6. Conclusion
Python type annotations can make static analysis of types a valuable check of code quality,
discovering errors before code is even executed. Up until recently, an interface might take
an array or a DataFrame, but no specification of the types contained in those containers
was possible. Now, complete specification of component types is possible in NumPy and
StaticFrame, permitting more powerful static analysis of types.

Providing correct type annotations is an investment. Reusing those annotations for runtime
checks provides the best of both worlds. StaticFrame’s CallGuard runtime type checker is
specialized to correctly evaluate fully specified generic NumPy types, as well as all generic
StaticFrame containers.
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Abstract

Advances in technology for data workflows have increased the speed and scope of scientific
discovery, however, scientific dialogue still uses outdated technology for communicating
and sharing knowledge. The widespread reliance on static PDF formats for research papers
starkly contrasts with the complex, data-driven and increasingly computational nature of
modern science. This gap, which is especially evident in the computational sciences, impedes
the speed of research dissemination, reuse, and uptake. We require new mediums to com-
pose ideas and ways to share research findings iteratively, as early as possible and connected
directly to software and data. In this paper we discuss two tools for scientific authoring and
publishing, MyST Markdown and Curvenote, and illustrate examples of improving metadata,
reimagining the reading experience, including computational content, and transforming
publishing practices for individuals and societies through automation and continuous
practices. We focus on the unique aspects of the tools, which enable computational and
interactive content, publishing and sharing continuously through automated checking and
typesetting, and provide case studies from individuals to societies who have adopted these
tools.

Keywords scientific communication, publishing, open science

1. Introduction and Motivation
In the face of mounting global challenges such as climate change, pandemics, and water
security, the imperative for rapid, effective scientific discovery and dissemination has never
been more acute. The pace at which these problems evolve and impact societies worldwide
demands an equally dynamic and innovative approach to how scientific research is
published. Despite significant advancements in technologies that enhance data collection,
analysis, and workflow efficiency, the mechanisms through which scientific knowledge is
shared have remained largely unchanged for decades [1]¹. The widespread reliance on
static PDF formats for research papers starkly contrasts with the complex, data-driven and
increasingly computational nature of modern science, creating bottlenecks in knowledge
dissemination and uptake.

¹The Future of Research Communication and eScholarship (https://force11.org) conference, released
their manifesto in 2012 P. E. Bourne et al. [1] and much of that original writing still pertains to today, with
the PDF being the main format of science communication.

A dispassionate observer, perhaps visiting from another planet, would surely be dumbfounded by
how, in an age of multimedia, smartphones, 3D television and 24/7 social network connectivity,
scholars and researchers continue to communicate their thoughts and research results primarily by
means of the selective distribution of ink on paper, or at best via electronic facsimiles of the same.

— P. E. Bourne et al. [1]
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This paper documents some of the design decisions made to address challenges in science
communication and publishing in two tools: (1) MyST Markdown (Markedly Structured
Text, https://mystmd.org), a community-run open-source Jupyter sub-project², which is a
text-based authoring framework that integrates computational content (e.g. Jupyter Note-
books); and (2) Curvenote (https://curvenote.com), which is a set of open-source utilities,
command-line tools, actions and services³ aimed to improve scientific publishing by
journals, societies, lab-groups, and individuals. In this article we provide background,
motivation and perspective for our efforts in developing new open-source tools for science
communication, with examples ranging from individual authors to journal administrators.
Though we present an overview of MyST Markdown, it should be emphasized that MyST
Markdown is a community-run project and the authors of this article do not speak for all
project participants; the community has varied goals for the project (including API docu-
mentation, community guidelines, educational tutorials). Our focus in this article is to give
our perspectives on scientific writing and publishing and how it intersects with these open-
community projects in addition to the open-source efforts that Curvenote is undertaking
around scientific publishing.

In developing these integrated tools and workflows, our goal is to lower the barriers to
continuously releasing and iterating on scientific ideas in the open and address the related
challenges of authoring and publishing in the context of computational, open-science docu-
ments. Introducing authoring tools that can understand and express structured, interactive,
and computational content has the potential to fundamentally change the way scientific
writing is checked, shared, and published — enabling faster iterations and direct ties to
reproducible, interactive content.

1.1. Authoring Structured Content

There are currently many challenges for individuals or groups to author research informa-
tion that can be shared in a structured and rigorous way. By this we mean the things that
structurally set a scientific article apart from, for example, a blog post: structured content,
cross-references, valid citations with persistent identifiers (PIDs), and standardized meta-
data for licensing, funding information, authors, and affiliations. These structured content
and metadata, as well as the standards behind them, are what define the “scientific record”
and enable archiving, discoverability, accessibility, interoperability and the ability to reuse
or cite content [2]. One metric for measuring the difficulty of satisfying these scientific stan-
dards is to look at the direct costs that are spent on transforming author submissions (e.g. a
PDF or a Word Document) into something that conforms to these standards and is ultimately
archived. In scientific publishing, about 15% of Article Processing Charges (APCs) go to
direct publication costs⁴ [3]. When applied to the global publishing industry⁵, this suggests
that approximately USD$2 billion dollars is spent on transforming author submissions (e.g.
a word-document, LaTeX, or a PDF) into a copyedited, well-formatted, typeset document
that can be archived with appropriate metadata [4]. This estimate does not include the
approximately USD$230 million spent on reformatting articles by scientists before publica-

²MyST Markdown became a Jupyter Project on June 28, 2024 jupyter/enhancement-proposals#123, and
was previously hosted by Executable Books (https://executablebooks.org).

³Curvenote is a company that provides many different tools for authoring and publishing content,
including a collaborative WYSIWYG online editor that can export to MyST Markdown. In this article we
discuss Curvenote’s open-source tools, specifically (a) a command-line interface (https://github.com/
curvenote/curvenote); and (b) GitHub actions for building and checking content (https://github.com/
curvenote/actions). We also highlight ideas from working with Curvenote’s partners when they pertain to
improving scientific publishing.

⁴Direct publication costs include: checking of manuscript, copyediting, typesetting, formatting figures/
graphs/tables, XML and metadata preparation, and handling corrections [3].

⁵Global revenue in scientific publishing is around USD$19 billion, with over 50% of the market
controlled by Elsevier, Wiley, Taylor & Francis, Springer Nature and SAGE [4].
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tion [5]. Many of these processes are hidden from authors⁶ as well as actionable access to
many of the benefits of structured data beyond citation graphs.

One goal of the MyST Markdown project is to dramatically reduce these direct-publication
costs⁷ and provide unfettered access to structured data as an output of authoring. The
availability of this structured data directly enables exported content in a variety of formats
including HTML, PDF and JATS-XML (a NISO standard for archiving scientific articles). In
this article, we will demonstrate that having structured data throughout authoring can lead
to a number of novel reading and authoring experiences Example 1, connect to interactivity
and computation Example  2, and can provide new opportunities for reuse and quality
checks when publishing Example 3. Furthermore, these transformation processes can be
run continuously, opening the possibilities for faster feedback Section 1.3, iterative drafts,
small tweaks and versioned improvements that otherwise would not be worth the time
and cost.

1.2. Computational Articles

A compounding challenge to scientific publishing that we are exploring through MyST
Markdown and Curvenote is how to deeply integrate computational workflows and con-
tent into science communication to promote interactive explorations and reproducible
practices. There are a host of challenges from user-interface design, to maintenance, to
archiving computational content. Many other tools have worked on aspects of integrating
computation into scientific articles, notably R-Markdown [7] and it’s successor Quarto
(https://quarto.org); both of these projects have similar aims to MyST Markdown. From a
user-experience goals perspective, we are interested in questions such as:

• how to make a change in a notebook figure and have that immediately show up in a
document;

• how to ensure computed values are inserted directly from source, rather than through
copy-and-paste;

• how to expose interactivity and exploration that a researcher often has when analyz-
ing a data-set;

• how to provide and launch archived interactive computing environments.

These questions require authoring tools to be able to execute content (e.g. using MyBinder;
[8]), to integrate and display computational/interactive outputs directly in reading experi-
ences, as well as scientific publishing systems that can understand and archive computa-
tional content (e.g. Docker containers). This deep integration can open up possibilities of
embedding interactive visualizations and computational notebooks directly into scientific
documents Example 2, transforming articles from static texts into rich, interactive, repro-
ducible narratives. In 2023, the authors helped to lead several working groups related to
these challenges as part of Notebooks Now!, a Sloan Foundation funded project led by the
American Geophysical Union. Those working groups found that integrating computational
documents, via Jupyter Notebooks, into scholarly publishing system requires a re-imagina-
tion of the publishing processes (from submission to peer-review to production to reading)

⁶Much of the production publication processes are hidden from scientific authors, with typesetting
focused on cross-references, linking citations, ensuring citations have appropriate IDs (e.g. DOIs) as well
as conversion to JATS XML (a NISO standard for archiving scientific articles), metadata preparation to
CrossRef, and archiving services like LOCKSS (https://lockss.org) and CLOCKSS (https://clockss.org).
Additionally, the many proprietary services and tools to create both online and PDF outputs of the
authors work that are nicely typeset for reading on the web or online.

⁷The cost of transforming author submissions to produce structured content and metadata should
approach zero, at least for a subset of users. For example, technical users who can use open-source
command-line tools like MyST Markdown and GitHub. This has been shown to be the case for the Journal
of Open Source Software (JOSS), for example, which advertizes a very low direct-publication cost of $2.71
per article [6].
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and that many existing processes and platforms are ill-equipped to handle computational
articles [9]. The “executable research articles” project out of eLife [10] has similar aims to
Notebooks Now!, with some differences in how notebooks and articles are separated which
we will discuss in Section 2.3.

The ability to deeply link computational content into how we communicate science can
improve reproducible practices, and surface more interlinked content about methods and
algorithms in use. If used to their full extent, these can also fully integrate live computa-
tional environments into scientific articles, which provides many exciting possibilities for
interrogating and extending scientific data and methods [11].

1.3. Continuous Science Practices

The manual effort involved in article production Section  1.1 coupled with the inability
to integrate computational work Section 1.2 negatively impacts the number of iterations/
versions and the immediacy of feedback to authors⁸. In other disciplines, such as software
development, these metrics of iteration and rapid feedback are often highly encouraged,
measured and constantly improved [12], [13], [14]. For example, software organizations
often measure and improve: the release cadence of a software product (e.g. continuous
delivery); how confident you are in that release (e.g. based on continuous integration tests);
how you get early feedback and confidence from linters and tests (e.g. the speed of your
unit tests and integrated linters into development environments); and how fast you can
obtain feedback from real usage and users on in-progress work (e.g. observability, analyt-
ics, customer interviews, design prototypes). Continuous delivery practices of software
development are also extremely well studied, with large-scale surveys of organizational
performance, design, robustness, and speed (see L. Leite, C. Rocha, F. Kon, D. Milojicic, and
P. Meirelles [13] and references within). One industry survey based on 36,000 professionals
worldwide grouped and compared respondents based on software delivery performance
[15]. The highest performing teams were 46x faster to release to production than the lowest
performing teams (i.e. on-demand and multiple times per day vs monthly or bi-annually)
and had 7x fewer errors (due in part to better continuous deployment and testing infra-
structure as well as smaller changesets)⁹ [15]. Similarly, R. Blinde [18] found in a survey
of 123 professionals that “deployment frequency” correlates the strongest with all other
organizational performance metrics. The study concluded that “practices that improve lead
time” (automated deployments, continuous testing and version control) have a positive
impact on “both software delivery performance and organizational performance” [18]. In
a continuous deployment transformation over a year, M. Callanan and A. Spillane [19]
saw a 20x reduction in manual effort releasing software and a 7x speed up in releases to
production.

The analogy between scientific publishing and software releases is imperfect and non-pre-
scriptive (i.e. scientific research is very different than developing a product). However, the
analogy is illustrative in areas where there is a focus on iterations, smaller changesets and

⁸There are two types of feedback that we mean: (1) technical feedback as you are authoring, for
example, “is this formatted correctly?” or “is this DOI correct?”; and (2) more substantial feedback from
reviewers and readers who can only give you feedback when you have published. In the current system,
technical feedback of an article-proof can take weeks and should be measured in milliseconds. Improving
the immediacy of feedback from readers and peer-reviewers is a harder problem that involves how our
existing sociotechnical system incentivizes article publishing rather than research communication and
sharing findings as early and as often as possible.

⁹In addition to increasing speed and robustness, continuous delivery practices also demonstrated that
the high-performing teams spent 20% more time on new work, had 5-20% less manual work, and were
1.8x more likely to recommend their team as a great place to work [15]. These numbers are intriguing
when contrasted to researchers, where (a) scientists already work 53.96 hours a week on average, and
only about 36% of their time is actually spent on research (8% on grants, 32% on teaching, and 24% on
service) [16] and (b) graduate students are six times more likely to experience depression than the
general population [17].
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releasing in-progress work¹⁰ as soon as possible to get feedback from peers (i.e. scientific
peer-review) or users (in the case of software products). The speed of scientific progress
depends in part on the speed of iteration and feedback. The time it takes for the peer-review
process is over three months, in high profile journals like Nature that time has almost
doubled over the past decade [21]. Rejections are anywhere from 50-90% [3] with valuable
reviews and expertise coming months or even years after the work is completed¹¹. There
are wide spread efforts in scientific publishing that focus on sharing smaller components
of research (e.g. FigShare [23], Octopus [24], MicroPublications [25], NanoPublications [26],
Protocols [27], PreRegistrations [28]), automated tools in the publication process [6], as well
as sharing research sooner in the life cycle especially through preprints [29], “Preprints in
Progress” [22] and getting feedback sooner from a more diverse community [30].

We refer to these related concepts as “continuous science”, adopting language and concepts
from “continuous integration and deployment”. The mechanisms to support continuous
processes are through automation, rapid feedback on errors, and focusing on small, rapid
changesets to accelerate feedback from peers. This gives us a technical lens to assess, for
example:

• How long does it take to get feedback if your metadata or DOI is incorrect?
• When a computational figure or data output changes, how long does it take to integrate

that into your document?
• How can you assess and test that the structure of a document applies to editorial rules?

In science there is a highly manual, absurdly expensive and disconnected process between
authoring and publishing. By moving to continuous practices and investing in the appro-
priate infrastructure to support continuous science we believe there is an opportunity
to accelerate scientific discovery by multiple orders of magnitude while simultaneously
increasing reproducibility, robustness and transparency of the underlying science.

1.4. Article Outline

For research-communication to be transformative on a similar scale as continuous practices
for software delivery, researchers require modern tools for authoring and publishing.
There are two inter-related capabilities that are necessary for this transition:

1. authoring mediums that support data, computation and structured content without
the need for expensive typesetting; and

2. publishing that is open and accessible to researchers at a variety of scales – individual
publishing, lab-groups, societies and institutions.

¹⁰As an example of the the rapid and timely sharing of in-progress results and data, it is worth
reflecting on the COVID-19 pandemic. Improved and more rapid sharing practices through data and
preprints helped to develop a vaccine in record time [20]. Researchers published and shared data on the
DNA sequence which enabled the design of a vaccine candidate in two days and the first manufacturing
within two weeks.

By the second week of January 2020, researchers in China published the DNA sequence of SARS-
CoV-2, the coronavirus that causes COVID-19. By early February, a COVID-19 vaccine candidate had
been designed and manufactured.

— https://covid19.nih.gov

In Massachusetts, the Moderna vaccine design took all of one weekend, and had been designed by
January 13, two days after the genetic sequence had been made public.

— https://nymag.com
¹¹In N. C. Penfold and J. K. Polka [22], they describe the importance of adopting preprints, as the

“overall peer review process can take years”. For the programmers reading this, it is worth a mental
comparison to the pain of a pull-request being open for years. Having relevant feedback that is close to
the time of implementation or writing is invaluable.
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Through the lens of MyST Markdown and Curvenote, this paper will explore how these
tools aim to address critical gaps in current scientific publishing practices. Our motivation
is to enhance the speed and impact of research dissemination, fostering a scientific ecosys-
tem that is more collaborative, reproducible, and equipped to tackle the urgent global
challenges of our time.

2. Authoring Tools
MyST Markdown (Markedly Structured Text, https://mystmd.org) is a community-driven
markup language that is a superset of CommonMark (a standard form of Markdown) with
special syntax for citations, cross-references, and block and inline extension points called
“directives” and “roles”. The block-level content provides multi-line containers surrounded
by either backticks or colons; examples include callout panels, figures, equations and tables
(see documentation). There is also specialized support for the types of metadata that are
important to collect for scientific articles (funding, ORCIDs, CRediT Roles, etc.). In 2022, the
Executable Books project (https://executablebooks.org, which hosts Jupyter Book and MyST)
started work on the mystmd command line interface (CLI), which was initially developed
as the Curvenote CLI, and later transferred to the ExecutableBooks project. In June 2024,
MyST Markdown officially became part of Project Jupyter (see enhancement proposal). This
tool allows authors writing in MyST Markdown to easily build websites and documents
and supports the JupyterLab MyST plugin. MyST is influenced by reStructuredText (RST)
and Sphinx – pulling on the nomenclature and introducing additional standards where
appropriate. There are also many intentional syntax similarities of MyST Markdown to R-
Markdown [7], Pandoc, and Quarto (https://quarto.org), especially in citation syntax and
frontmatter structure. MyST Markdown is written in Javascript and builds upon the unified
community of tools, output formats and transforms, whereas Quarto builds upon Pandoc
written in Haskell + Lua; there are also differences in approach in the legal and commu-
nity foundations (Pandoc and Quarto are GPL vs. MyST which is a more permissive MIT
license; MyST is a community-driven project by Project Jupyter whereas Quarto is driven
by a single corporate entity). The initial use case driving the development and design of
MyST Markdown has been JupyterBook, which can create educational online textbooks and
tutorials with Jupyter Notebooks and narrative content written in MyST.

This article will not attempt to describe the markup syntax directly, for that we suggest
browsing the documentation at https://mystmd.org, instead we will focus our attention
on the use cases for scientific publishing that we are trying to make as easy as possible.
Specifically, the ability to add persistent identifiers (PIDs) and links to other structured
content; hover previews to show details on demand; integrating live computational content
and interactive figures; and exporting to many different formats including those used by
scholarly publishing.

2.1. Utility of Links and Identifiers

In MyST Markdown, citations can be added inline using @cite-key, following Pandoc-style
syntax and referencing a BibTeX file in a project. It is also possible to directly link to
DOIs using @10.5281/zenodo.6476040, which will create a hover reference [31] as well as a
references section at the bottom of the page.

This enhanced-links concept can be extended to Wikipedia, RRIDs, RORs, GitHub
issues or code, and other scientific databases to augment writing. For example, the
link <rrid:SCR_008394> becomes SCR_008394, with rich-metadata and citations created.
Wikipedia links come with previews, for example, <wiki:gravitational_waves> becomes
gravitational waves. GitHub links to pull-requests also give hover information, for example,
the following link #87 shows a hover preview in the online-version.
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The use of DOIs and other structured scientific metadata can be reused in multiple different
formats such as JATS XML and CrossRef deposits to create a DOI. Our goal with these
integrations is to make the use of persistent identifiers (PIDs) both easy and rewarding to
the author as they are writing. In traditional typesetting, this metadata is only added at
publication time requiring specialized vendors and/or proprietary technology.

2.2. Hover Previews for Content and Metadata

In A. Head et al. [32] the authors show a speed up in comprehension of an article by 26%
when showing information in context (i.e. “details on demand” [33]), rather than requiring
researchers to scroll back and forth to find figures and equations. MyST supports these
concepts natively for cross-referencing equations, figures, and tables using hover-previews
Example 1. This enhances the reading experience of scientific documents and retrieval of
information.

In MyST Markdown we have also extended this “details on demand” concept to abbrevia-
tions to make it trivial to disambiguate the meaning of acronyms. In an analysis of over
18 million articles in A. Barnett and Z. Doubleday [34], the authors found that the vast
majority of abbreviations (79%) appeared fewer than 10 times and many abbreviations had
conflicting meanings even in the same discipline. In MyST Markdown, there is a trivial way
to document abbreviations in YAML frontmatter or the project configuration Program 1,
these are then applied to all instances of that abbreviation in the article or notebooks giving
a hover-preview and accessible HTML (e.g. try hovering over these in the online version:
JATS, XML, VoR).

Example 1. Hover and Dive Deeper

Any figure, table, or equation can be referenced in MyST and in addition to automated
numbering the cross-references have hover-references. This design feature is impor-
tant for two reasons: (1) it improves reading comprehension; and (2) it focuses on
structured data which can be accessible between papers, creating an open-ecosystem
of machine-actionable, reusable content. The referenced content can also be interactive
or computational.

Figure 1.  Instantly accessible information can deep-dive link all the way to interactive figures. These
practices help with reading comprehension by around 26% by providing information when the reader
needs it [32].
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abbreviations:
  UA: ulnar artery

Program 1.  YAML metadata used in MyST frontmatter to give accessible hovers to all abbreviations with
minimal effort for the author. In this case, the acronym UA has over 18 distinct meanings in medicine [35]
not to mention other disciplines.

2.3. Integrating Computational Content

Beyond structured typography, integrated metadata and hover-previews, MyST Markdown
understands computational content and has been integrated with Jupyter [36]. The goal of
this is two fold: (1) allowing for updates to computational content, figures, tables, and calcu-
lations to directly update documents; and (2) to bring interactive figures and integrated
computation directly into articles. In the composition of a scientific narrative, scientists
often use individual notebooks to create various components of their research (e.g. the
preparation of a single figure, table or calculation). The outputs of these notebooks (a figure,
table, or calculation) can then be used in a main, narrative-driven document — a scientific
article or presentation.

In some cases, it is possible to collapse all computational information into a single article,
and visually hide the code to focus on the narrative or presentational flow; an approach
experimented with by eLife [10]. This approach is appropriate for tutorials or the repro-
duction of visualizations rather than reproduction of a distinct detailed methodology that
requires its own explanation and/or lengthy computation. Another approach is to include
supplemental notebooks that can capture those individual steps [9], and transclude content
Figure 2. Both approaches are appropriate in different circumstances, and depends on the
goal of the communication, nature of the research, speed of execution, and if individual
steps require dedicated narrative explanation. Additionally, the possibility of publishing
a computational article, allows authors to rethink how to communicate their work and
prepare specific visualizations and compact results datasets to take advantage of the format.

In Figure 2, we show an example of reusing computational outputs, such as figures or tables
directly in a single computational research article. By embedding these rather than using
a screenshot or copy-paste, any changes to the computational content can be immediately
applied on a re-render. The embedding is completed through a simple MyST Markdown
syntax that references a labeled cell in a Jupyter Notebook in, for example, a figure or table
Program 2.

Similar to the hover-references in Example 1, this approach improves the metadata around
the notebooks and exposes individual outputs or code-snippets to be imported into other

Figure 2.  A schematic of embedding content from Jupyter Notebooks into an article. The purple and
orange components, interactive figure or other computational outputs, are created in a computational
notebook and subsequently used in other narrative or presentation-focused scientific article.
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:::{figure} #embedded-cell
Additional caption.
:::

Program 2.  Embedding a cell from a supplementary notebook directly into a computational document
by referencing the label/ID of the cell and adding a caption. The cell in the notebook must be labeled with
a #| label: embedded-cell as the first line of the content.

documents or projects. Additionally, we can attach either static-interactivity (e.g. Plotly,
Altair) or dynamic computation (e.g. BinderHub, JupyterHub or JupyterLite) to these figures
to run live computations directly in the article Example 2. Here we are aiming at a much
richer, structured information commons that moves beyond just tracking scientific meta-
data towards easy-to-use tools that reuse scientific content.

2.4. Single Source to Many Outputs

These capabilities of cross-references, typography and embedding visualizations and data-
frames are complemented by a single-source export system that supports professional
article templates and JATS XML Figure 4. This is referred to as single-source publishing [37],
however, many implementations in scientific publishing focus first on manual translation
to XML (e.g. from Word or LaTeX), rather than on an author-facing implementation.

Example 2. Computational Reproducibility and Interactivity

MyST allows for the full reproducible environment to be specified (via REES) and
reproduced through tools like MyBinder. Figures can be integrated directly into articles,
pressing a button to launch live and interactive figures that build upon the Jupyter
ecosystem. These tools build on the Jupyter protocols and reuse components from the
JupyterLab ecosystem, extending that into various pages using a package called thebe.

Figure 3.  Embedded notebook cells with live computation directly in an articles with computation
backed by Jupyter. These can be running on BinderHub or directly in your browser through Jupyter-
Lite.
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Figure 4.  Export to PDF using LaTeX or Typst is supported for hundreds of different journal templates in
addition to Microsoft Word or JATS XML, which is used throughout scientific publishing (showing content
from R. Cockett, L. J. Heagy, and D. W. Oldenburg [38] CC-BY-SA-4.0).

With single-source publishing, we can rely on rich transformations of the source content
that can create professional PDFs, interactive HTML, and structured metadata such as JATS
XML, which is the current standard for scientific archiving and text-mining.

3. Publishing
The native way to publish or share a MyST article is through content-as-data, a collection of
JSON files that represent the full documents and all associated metadata (if you are reading
this online, you can add a .json to the URL to access the content). This MyST content may be
served alongside an independent website theme, which dynamically creates HTML based
on these JSON files (very similar to XML-based single source publishing [37], but using mod-
ern web-tooling). This server-side approach has a number of advantages, in that it allows
you to maintain a journal/site theme, without having to upgrade or rebuild all content as
would be required by static tooling. It also puts content addressability as a first class concern
(via the .json), enabling global cross referencing and opening up opportunities for varied
publishing models in future. This is the approach that we take with Curvenote journals, and
provide managed services to maintain journal sites, manage and curate content, as well as
provide the editorial management tools and workflows.

It is also possible to share MyST Markdown as a static HTML site using GitHub Pages. To
create a static site on GitHub pages you can run myst init --gh-pages, which will walk
you through the steps of creating a GitHub action to publish your content statically. In this
scenario, a static HTML site is built from your content which can be hosted as any other
static website, while some of the advantages of dynamic hosting are lost, it is an easy and
accessible way for individuals to self-publish.

In 2024, Curvenote was asked to support the SciPy Proceedings and re-imagine a MyST
based publishing approach that uses GitHub for open-peer-review, implementing a sub-
mission, editorial and peer review process with GitHub pull-requests. The original SciPy
proceedings infrastructure was developed around 2010 and has influenced the design of the
Journal of Open Source Software (JOSS), which has popularized GitHub-based peer-review
[6]. In 2024, the workflow for SciPy Proceedings was updated to use MyST Markdown for the
authoring process¹² (previously RST and LaTeX were supported, and the build process was
in Sphinx), and the submission process now uses the open-source Curvenote CLI in combi-
nation with dedicated open-source Curvenote GitHub Actions to build, check, and preview
the content of each commit, using GitHub workflows to automate the process, providing
immediate feedback for authors and the conference editorial team.

¹²LaTeX is also supported by parsing and rendering directly with the mystmd CLI, this is completed
through @unified-latex.
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3.1. Structural Checks

The open-source Curvenote CLI (https://github.com/curvenote/curvenote) provides checks
for the structure of a document to ensure it meets automated quality controls for things like
references, valid links, author identifiers (e.g. ORCID), or funding information. Executing
curvenote check in a MyST project will build the project and use the structured data to assess
metadata (e.g. do authors provide ORCIDs), structural checks (e.g. does the article have an
abstract?; is the article below a word count?), and check that references have valid DOIs.

We have designed these checks in a similar pattern to linting and/or unit tests in scientific
software, which continually give feedback on the structural health of a codebase with
near immediate feedback to authors Example 3. Authors can take action to improve their
metadata directly, by including DOIs, CRediT Roles, ORCIDs, and structural checks such
as word count or missing sections. For example, in the SciPy Proceedings in 2024, which
used Curvenote checks for their submission system, required and optional metadata were
improved by authors reacting to these automated checks without any intervention from
the proceedings editorial team (e.g. scipy-conference/scipy_proceedings#915 added CRediT
roles, ORCIDs abbreviations, and DOIs to get a passing check Figure 6). This is a low-friction
way of improving metadata at the time of authoring or submission to elevate content to the
standards that are required for a certain type of publication (e.g. proceedings vs. blog post
vs. peer-reviewed journal).

3.2. Automated Actions

Upon submission of there are a number of checks that are run and a submission or draft
is deployed to Curvenote’s platform, which stores the structured MyST project. We utilized
GitHub Actions to automate initial checks and generate previews of submissions (via https://
github.com/curvenote/actions). The actions automatically generate a preview of the manu-
script exactly as it would appear in publication using MyST Markdown, and these are linked
within the pull request comments for easy access by reviewers Figure 6.

3.3. Continuous Practices

MyST Markdown is a simple text-based format that can integrate directly with computa-
tional analysis and results in notebooks or scripts. This simplicity means a researcher’s
manuscript can be easily created and maintained as an integral part of their research
code base as they are working. This enables, for example, am article or draft that can be
automatically rebuilt with the latest figures and data tables on every change, and any issues
that you would hit on submission or publication are flagged as they are created. This is one
of the ways that continuous science practices Section 1.3 can lead to radically improved
efficiencies at scale.

Curvenote’s tools build on this theme of enabling researchers to have more visibility into
how their work will appear when submitted and published. The previews generated during
the journal submission process, or by the actions on a researchers own repo can also
be generated by an author at any time. By running curvenote submit <journal> --draft
researchers can get a set of check results and a preview in the style of that venue, and where
submissions of Computational Articles are permitted, authors and reviewers will even get
feedback on reproducible environment check that any interactive figures and notebooks
execute as expected.

3.4. Use Cases

The rapid feedback in authoring Section  2 coupled with structural checks Section  3.1,
automation Section  3.2, and archiving of the content opens workflows for varied sizes
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Example 3. Structural Checks and Metadata Checks

Specific checks can be setup for any kind of content being submitted with MyST, for
example, a “Short Report” might have different length requirements or metadata stan-
dards than a “Research Article” or “Editorial”. Using Curvenote, these checks can be
configured for a specific venue or kind of article, for example, to check specifically for
SciPy Proceedings articles, curvenote check scipy --kind Article --collection 2024 can
be run, where the list of checks is configured remotely by journal administrators.

Figure 5.  Running curvenote check on a SciPy Proceedings article to check for missing DOIs, author
ORCIDs, word-count and specific sections (e.g. abstract). These can be run in less than a few seconds
both locally and through GitHub actions Figure 6, which provides a user interface on the checks.

Figure 6.  An example of a comment by a GitHub action, which shows the checks and preview of the
article directly. The checks in this example have promoted the author to improve metadata, see scipy-
conference/scipy_proceedings#911.
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Figure 7.  MyST Markdown and Curvenote tools can help lower the barrier to entry for scientific
publishing workflows for journals, research institutes, conferences, private consortiums, universities, and
lab groups.

of teams to adopt these continuous science practices. For example, individuals publishing
static MyST Markdown sites, lab-groups creating a better archive to highlight the research
contributions of their team (e.g. Applied Geophysics), conference proceedings (e.g. SciPy
Proceedings), or more formalized society journals (e.g. Physiome, American Geophysical
Union, Elemental Microscopy) Figure 7.

4. Conclusions
Scientific publishing infrastructure is disconnected from the day-to-day workflows of
scientists, and at scale this slows the progress of science. These misalignments are partic-
ularly pronounced in computational disciplines, where rapid evolution of methodologies,
software, and data demands equally dynamic and interconnected platforms. This gap
— between the authoring/doing of research and the communicating/publishing of the
research — slows the speed of research dissemination, reuse, and uptake and completely
impedes “networked knowledge” and importing/reusing work in a structured way. For ex-
ample, “importing” visualizations, equations or any other deeply-linked content – including
provenance information – into new research articles, documentation or educational sites is
completely impossible in today’s research ecosystem. As a metaphor, compare open-access
science to open-source programming: it would be a world without package managers to
share, version, reuse, and rapidly build upon other peoples work in a structured way. The
open-source ecosystem would not exist without this infrastructure.

Open infrastructure for communicating science also has to be easy to integrate into existing
tools, support computational, interactive components, be archivable for the long term, and
be adopted by our existing sociotechnical system of societies, journals, and institutions.
There are two interconnected problems that need to be solved: (1) upgrade existing scien-
tific authoring tools, ensuring these are integrated into both scientific and data-science
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ecosystems; and (2) develop radically better ways to share content as individuals, small
groups, preprints, and formalized, traditional journals with existing societies and institu-
tions. The two problems are connected, in that the authoring tools should be able to deeply
integrate with publishing mediums (e.g. referencing a figure from a publication should be
able to show you that figure directly as you are authoring, including all interactivity and
computation).

In this article we have presented some of the goals behind features of MyST Markdown
and Curvenote, to support new open-science infrastructure including authoring tools as
well as publishing workflows that support checks and automation. To support every next-
generation research tool on top of open access knowledge, we need access to high-quality,
structured content, data and software — not just the scholarly metadata and citation
graph. Our goal of contributing to MyST Markdown is to make the processes behind creating
this structured data more accessible and affordable. These tools in the hands of researchers
can also enable process changes and continuous science practices: where checking and
automation can support rapid iterations and feedback. The analogies between continuous
delivery of software and continuous science give us an opportunity to peek ahead a decade
to an analogous future and draw on many learnings on how to organize and focus infra-
structure to get the best out of our scientific community.

There is, of course, an enormity of work ahead of these tools to transform science publishing
at scale. We are grateful to our society partners who are changing community practices
around publishing to support HTML-first publishing, experimenting with computational
articles, and implementing new peer-review workflows. Tools on their own do not make
change, but can help to enable it. Improvements to scientific publishing require many
diverse community efforts to improve the quality and speed of how we communicate
knowledge, and ultimately to accelerate scientific progress.
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Abstract

Understanding neighborhood context is critical for social science research, public policy
analysis, and urban planning. The social meaning, formal definition, and formal operational-
ization of “neighborhood” depends on the study or application, however, so neighborhood
analysis and modeling requires both flexibility and adherence to a formal pipeline. Maintain-
ing that balance is challenging for a variety of reasons. To address those challenges, geosnap,
the Geospatial Neighborhood Analysis Package provides a suite of tools for exploring, mod-
eling, and visualizing the social context and spatial extent of neighborhoods and regions over
time. It brings together state-of-the-art techniques from geodemographics, regionalization,
spatial data science, and segregation analysis to support social science research, public policy
analysis, and urban planning. It provides a simple interface tailored to formal analysis of
spatiotemporal urban data.

Keywords spatial-analysis, geodemographics, boundary-harmonization, neighborhood-
dynamics, segregation

1. Introduction
Quantitative research focusing on cities, neighborhoods, and regions is in high demand. On
the practical side, city planners, Non-Governmental Organizations (NGOs), and commercial
businesses all have increasing access to georeferenced datasets and spatial analyses can
turn these data into more efficient, equitable, and profitable, decision-making [1], [2], [3],
[4], [5], [6], [7]. On the academic side, many of the era’s pressing problems are spatial or
urban in form, requiring bespoke statistical methods and simulation techniques to produce
accurate inferences. Thus, while data science teams in industries across the planet race to
conquer geospatial data science few practitioners have expertise in the appropriate data
sources, modeling frameworks, or data management techniques necessary for wrangling
and synthesizing urban data.

To address these challenges we introduce geosnap, the geospatial neighborhood analysis
package, which is a unique Python package sitting at the intersection of spatial science
and practical application. In doing so, it provides a bridge between formal spatial analysis
and the applied fields of neighborhood change, access to opportunity, and the social
determinants of health. The package provides fast and efficient access to hundreds of
socioeconomic, infrastructure, and environmental quality indicators that allow researchers
to move from zero data to an informative model in a few short lines of code.

It is organized into layers for data acquisition, analysis, and visualization, and includes tools
for harmonizing disparate datasets into consistent geographic boundaries, creating “geo-
demographic typologies” that summarize and predict multidimensional segregation over
time, and network analysis tools that generate rapid (locally computed) service areas and
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travel isochrones. We expect the tool will be immediately useful for any analyst studying
urban areas.

2. The Geospatial Neighborhood Analysis Package (geosnap)
geosnap provides a suite of tools for exploring, modeling, and visualizing the social context
and spatial extent of neighborhoods and regions over time. It brings together state-
of-the-art techniques from geodemographics, regionalization, spatial data science, and
segregation measurement to support social science research, public policy analysis, and
urban planning. It provides a simple interface tailored to formal analysis of spatiotemporal
urban data, and its primary features include

• Quick access to a large database of commonly used neighborhood indicators from

U.S. providers including the U.S. Census, the Environmental Protection Agency (EPA),
Longitudinal Household-Employment Dynamics (LEHD), the National Center for Education
Statistics (NCES), and National Land Cover Database (NLCD), streamed efficiently from the
cloud or stored for repeated use.

• Fast, efficient tooling for standardizing data from multiple time periods into a

shared geographic representation appropriate for spatiotemporal analysis
• Analytical methods for understanding sociospatial structure in neighborhoods, cities,

and regions, using unsupervised ML from scikit-learn and spatial optimization from PySAL
• Classic and spatial analytic methods for diagnosing model fit, and locating (spatial)

statistical outliers
• Novel techniques for understanding the evolution of neighborhoods over time, includ-

ing

identifying hotspots of local neighborhood change, as well as modeling and simulating
neighborhood conditions into the future

• Unique tools for measuring segregation dynamics over space and time
• Bespoke visualization methods for understanding travel commute-sheds, business

service-areas, and neighborhood change over time

The package is organized into four layers providing different aspects of functionality,
namely io for data ingestion and storage, analyze for analysis and modeling functions,
harmonize for geographic boundary harmonization, and viz for visualization.

import geopandas as gpd
import matplotlib.pyplot as plt
import pandas as pd
from geosnap import DataStore
from geosnap import analyze as gaz
from geosnap import io as gio
from geosnap import visualize as gvz
from geosnap.harmonize import harmonize

2.1. Data

Neighborhoods, cities, and regions can be characterized by a variety of data. Researchers
use the social, environmental, institutional, and economic conditions of the area to under-
stand change in these places and the people who inhabit them. The geosnap package tries
to make the process of collecting and wrangling these various publicly available datasets
simpler, faster, and more reproducible by repackaging the most commonly used into
modern formats and serving (those we are allowed to) over fast web protocols. This makes
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it much faster to conduct, iterate, and share analyses for better urban research and public
policy than the typical method of gathering repeated datasets from disparate providers in
old formats. Of course, these datasets are generally just a starting place, designed to be used
alongside additional information unique to each study region.

Toward that end, many of the datasets used in social science and public policy research
in the U.S. are drawn from the same set of resources, like the Census, the Environmental
Protection Agency (EPA), the Bureau of Labor Statistics (BLS), or the National Center for
Education Statistics (NCES), to name a few. As researchers, we found ourselves writing
the same code to download the same data repeatedly. That works in some cases, but it is
also cumbersome, and can be extremely slow for even medium-sized datasets (tables with
roughly 75 thousand rows and 400 columns representing Census Tracts in the USA can take
several hours or even days to download from Census servers). While there are nice tools
like cenpy or pyrgris, these tools cannot overcome a basic limitation of many government
data providers, namely that they use old technology, e.g., File Transfer Protocol (FTP) and
outdated file formats (like shapefiles).

Thus, rather than repetitively querying these slow servers, geosnap takes the position that
it is preferable to store repeatedly-used datasets in highly-performant formats, because
they are usually small and fast enough to store on disk. When not on disk, it makes sense
to stream these datasets over S3, where they can be read very quickly (and directly).
For that reason, geosnap maintains a public S3 bucket, thanks to the Amazon Open Data
Registry, and uses quilt to manage data under the hood. A national-level dataset of more
than 200 Census variables at the blockgroup scale (n=220333), including geometries can be
downloaded in under two minutes, requires only 921MB of disk space, and can be read
into GeoPandas in under four seconds. A comparable dataset stored on the Census servers
takes more than an hour to download from the Census FTP servers in compressed format,
requires more than 15GB of uncompressed disk space, and is read into a GeoDataFrame in
6.48 seconds, including only the geometries.

The DataStore class is a quick way to access a large database of social, economic, and envi-
ronmental variables tabulated at various geographic levels. These data are not required to
use the package, and geosnap is capable of conducting analysis anywhere in the globe, but
these datasets are used so commonly in U.S.-centric research that the developers of geosnap
maintain this database as an additional layer.

datasets = DataStore()

2.1.1. Demographics:

Over the last decade, one of the most useful resources for understanding socioeconomic
changes in U.S. neighborhoods over time has been the Longitudinal Tract Database (LTDB),
which is used in studies of neighborhood change [8]. One of the most recognized benefits
of this dataset is that it standardizes boundaries for census geographic units over time,
providing a consistent set of units for time-series analysis. A benefit of these data is the ease
with which researchers have access to hundreds of useful intermediate variables computed
from raw Census data (e.g. population rates by race and age). Unfortunately, the LTDB data
is only available for a subset of Census releases (and only at the tract level), so geosnap
includes tooling that computes the same variable set as LTDB, and it provides access to those
data for every release of the 5-year ACS at both the tract and blockgroup levels (variable
permitting). Note: following the Census convention, the 5-year releases are labelled by the
terminal year.
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Unlike LTDB or the National Historical Geographic Information System (NHGIS), these
datasets are created using code that collects raw data from the Census FTP servers, com-
putes intermediate variables according to the codebook, and saves the original geometries–
and is fully open and reproducible. This means that all assumptions are exposed, and the
full data processing pipeline is visible to any user or contributor to review, update, or send
corrections. Geosnap’s approach to data provenance reflects our view that open and trans-
parent analysis is always preferable to black boxes, and is a much better way to promote
scientific discovery. Further, by formalizing the pipeline using code, the tooling is re-run to
generate new datasets each time ACS or decennial Census data is released.

To load a dataset, e.g. 2010 tract-level census data, call it as a method to return a
geodataframe. Geometries are available for all of the commonly used administrative units,
many of which have multiple time periods available:

• metropolitan statistical areas (MSAs)
• states
• counties
• tracts
• blockgroups
• blocks

Datasets can be queried and subset using an appropriate Federal Information Processing
Series (FIPS) Code, which uniquely identifies every federally defined geographic unit in the
U.S.

# blockgroups in San Diego county from the 2014-2018 American Community Survey
# (San Diego county FIPS is 06073)
sd = gio.get_acs(datasets, year=2018, county_fips=['06073'])

There is also a table that maps counties to their constituent Metropolitan Statistical Areas
(MSAs). Note that blockgroups are not exposed directly, but are accessible as part of
the ACS and the Environmental Protection Agency’s Environmental Justic Screening Tool
(EJSCREEN) data. If the dataset exists in the DataStore path, it will be loaded from disk,
otherwise it will be streamed from S3 (provided an internet connection is available). The
geosnap io module (aliased here as gio) has a set of functions for creating datasets for
different geographic regions and different time scales, as well as functions that store remote
datasets to disk for repeated use.

2.1.2. Environment:

The Environmental Protection Agency (EPA)‘s envrironmental justice screening tool
(EJSCREEN) is a national dataset that provides a wealth of environmental (and some
demographic) data at a blockgroup level. For a full list of indicators and their metadata, see
this EPA page. This dataset includes important variables like air toxics cancer risk, ozone
concentration in the air, particulate matter, and proximity to superfund sites.

2.1.3. Education:

Geosnap provides access to two related educational data sources. The National Center
for Education Statistics (NCES) provides geographic data for schools, school districts and
(some time periods) of school attendance boundaries. The Stanford Education Data Archive
(SEDA) is a collection of standardized achievement data, available at multiple levels (from
state to district to school) with nearly complete national coverage. These data were released
by researchers at Stanford to “help us—scholars, policymakers, educators, parents—learn
how to improve educational opportunity for all children,” and are an incredible resource
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for social science research. For more information on how to use the SEDA data, see their
website, or the Educational Opportunity Project. These can be combined quickly to visualize
or conduct further spatial analyses of educational achievement at multiple geographic
scales.

2.1.4. Employment:

The LEHD Origin-Destination Employment Statistics (LODES) data contain job counts tab-
ulated for home and workplace census block. These data are broken down by industrial
sector and a handful of demographic characteristics like race and education. LODES also
provides flow matrices that show the origin and destination blockgroups, and the number
of commuters who travel between the two.

2.2. Harmonization

A common issue in spatial analysis is that geographic tabulation units can (and often do)
change over time. For instance the U.S. census boundary polygons like tracts and blocks are
re-drawn with each census to accomodate population growth and change. That means it’s
impossible to see if a given tract has changed over time because the label assigned to each
tract means something different in each time period. To help solve that problem geosnap
leverages the PySAL tobler package to harmonize spatial boundaries over time. We do so
by calling the harmonize() function.

The simplest way to harmonize boundaries is to use areal interpolation, meaning we use
the area of overlap between consecutive years to create a weighted sum of intersecting
polygons. This approach assumes each polygon has constant density of each attribute so its
most useful when the polygons are small and homogenous.

When harmonizing boundaries over time, we need to distinguish between intensive and
extensive variables because each needs to be handled differently during the interpolation
process. An extensive variable is one whose “magnitude is additive for subsystems, where
“the system” this context, refers to the collection of geographic units (which serve as statis-
tical sampling units), and each subsystem is a single geographic unit. Thus, geographically-
extensive attributes include those such as population counts, land area, or crop yield, and
geographically-intensive variables typically include ratio or interval functions of extensive
variables, e.g. density (total population per unit of land), average income (total income per
person), or the share of a particular population subcategory (total population in category
per unit of population). Median income is a statistic (so intensive), whereas total population
is a count (extensive), so we make sure to pass each to the appropriate list.

To standardize the San Diego Census data into consistent boundaries (specifically those
defined in 2020), we can use the following code, focusing on median contract rent and the
share of Hispanic/Latino population in each unit:

July 10, 2024 141

https://edopportunity.org/
https://pysal.org/tobler
https://en.wikipedia.org/wiki/Intensive\_and\_extensive\_properties
https://en.wikipedia.org/wiki/Intensive\_and\_extensive\_properties


geosnap: The Geospatial Neighborhood Analysis Package  | Knaap & Rey, 2024

2.2.1. Harmonizing to a Common Census Boundary:

sd_harm20 = harmonize(
    sd,
    intensive_variables=["median_contract_rent", "p_hispanic_persons"],
    extensive_variables=["n_total_pop"],
    weights_method="area",
    target_year=2020,
)
gvz.plot_timeseries(
    sd_harm20,
    "median_contract_rent",
    title="Median Rent, 2010 Boundaries",
    cmap="Greens",
    dpi=200,
    figsize=(12, 10),
    nrows=2,
    ncols=2,
)
plt.tight_layout()

2.2.2. Harmonizing to an Alternative Polygon:

In some cases, it can be useful to discard the original boundaries altogether and instead
harmonize all time periods to a consistent geographic unit defined elsewhere (like a school
district, or congressional district, or a regular hexgrid).
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from tobler.util import h3fy
# create a hexgrid that covers the surface of the san diego dataframe
sd_hex = h3fy(sd[sd.year == 2010], resolution=7)
# interpolate the census data (source) to the hexgrid (target)
sd_hex_interp = harmonize(
    sd, target_gdf=sd_hex, intensive_variables=["median_contract_rent"]
)
# plot the result
gvz.plot_timeseries(
    sd_hex_interp,
    "median_contract_rent",
    title="Median Rent, Regular Hexgrid",
    dpi=200,
    cmap="Greens",
    figsize=(12, 10),
    nrows=2,
    ncols=2,
)
plt.tight_layout()

After the harmonization process, each polygon represents a distinct portion of the study
area whose boundaries are unchanging, and can be conceived as a discrete unit in temporal
analyses. That is, unlike the original decennial census data whose polygons are different
in each time period, the harmonized data can be used directly in studies of neighborhood
change, for example those using Markov-based methods [9], [10], [11], [12], [13] or sequence-
analysis methods [3], [14] (both of which are built into geosnap).

2.3. Analysis

2.3.1. Geodemographic Clustering & Regionalization:

Geodemographic analysis, which includes the application of unsupervised learning algo-
rithms to demographic and socioeconomic data, is a widely-used technique that falls under
the broad umbrella of “spatial data science” [15], [16], [17], [18], [19], [20]. Technically there

July 10, 2024 143

https://en.wikipedia.org/wiki/Geodemographic\_segmentation


geosnap: The Geospatial Neighborhood Analysis Package  | Knaap & Rey, 2024

is no formal spatial analysis in traditional geodemographics, however given its emphasis
on geographic units of analysis (and subsequent mapping of the results) it is often viewed
as a first (if not requisite step) in exploratory analyses of a particular study area.

The intellectual roots of geodemographics extend from analytical sociology and classic
studies from factorial ecology [21], [22], [23], [24], [25] and social area analysis [26], [27],
[28], [29], [30]. Today, geodemographic analysis is routinely applied in academic studies
of neighborhood segregation and neighborhood change, and used extremely frequently in
industry, particularly marketing where products like tapestry and mosaic are sold for their
predictive power. Whereas social scientists often look at the resulting map of neighborhood
types and ask how these patterns came to be, practitioners often look at the map and ask
how they can use the patterns to inform better strategic decisions.

In urban social science, a primary goal is often to study the social composition of neigh-
borhoods in a region (e.g. the racial and ethnic makeup, the population’s age distribution
and fertility rates, or the socioeconomic disparities or commercial and industrial mix, to
name only a few), and understand whether they have changed over time (and where)
and whether these neighborhood types are consistent over time and across places. That
requires a common pipeline of collecting the same variable sets, standardizing them (often
within the same time period, so they can be pooled with other time periods) then clustering
the entire long-form dataset followed by further analysis and visualization of the results.
Most often, this process happens repeatedly using different combinations of variables or
different algorithms or cluster outputs (and in different places at different times). Geosnap
provides a set of tools to simplify this pipeline making it trivial to construct, interrogate,
and visualize a large swath of models (e.g. using different subsets of variables) for rapid
exploration.

To create a simple geodemographic typology, use the cluster function from geosnap’s
analyze module and pass a geodataframe, a set of columns to include in the cluster analysis,
the algorithm to use and the number of clusters to fit (though some algorithms require
different arguments and/or discover the number of clusters endogenously. By default, this
will z-standardize all the input columns, drop observations with missing values for input
columns, realign the geometries for the input data, and return a geodataframe with the clus-
ter labels as a new column (named after the clustering algorithm). Using the return_model
argument specifies that the underlying object from scikit-learn or PySAL’s spopt package is
returned for further diagnostic inspection.

# collect data for the atlanta MSA (12060) at the tract level
atl = gio.get_acs(datasets, msa_fips="12060", years=2021, level="tract")
# create a neighborhood typology with 5 clusters via kmeans
atl_kmeans, atl_k_model = gaz.cluster(
    gdf=atl, method="kmeans", n_clusters=5, columns=columns, return_model=True
)

To understand what the clusters are identifying, another data visualization technique is
useful. Here, we rely on the Tufte-ian principle of “small multiples” (i.e. where each bivari-
ate visualization is repeatedly displayed, conditional on a third variable [31], and create a
set of violin plots that show how each variable is distributed across each of the clusters.
Each of the inset boxes shows a different variable, with cluster assignments on the x-axis,
and the variable itself on the y-axis The boxplot in the center shows the median and inter-
quartile range (IQR), and the “body” of the “violin” is a kernel-density estimate reflected
across the x-axis. In short, the fat parts of the violin show where the bulk of the observations
are located, and the skinny “necks” show the long tails.

July 10, 2024 144

https://www.esri.com/en-us/arcgis/products/data/data-portfolio/tapestry-segmentation
https://www.experian.com/small-business/geodemographic-segmentation-mailing-lists


geosnap: The Geospatial Neighborhood Analysis Package  | Knaap & Rey, 2024

# plot the distribution of each input variable grouped by cluster
gvz.plot_violins_by_cluster(atl_kmeans, columns, cluster_col="kmeans")

Regionalization is a similar exercise that attempts to define groups of homogenous tracts,
but also enforces a contiguity constraint so that similar geographic units must also be
proximate to one another. As with geodemographic clustering, when carrying out a region-
alization exercise, we are searching for groups of observations (census tracts in this case)
which are similar in socioeconomic and demographic composition. If the goal of geodemo-
graphics is to identify neighborhood types that could exist anywhere in the region, the goal
of regionalization is to identify specific neighborhoods that exist at a distinct place in the
region.

Following that concept, we can use constrained clustering to develop an empirical version
of geographically bounded neighborhoods, where the neighborhoods are defined by inter-
nal social homogeneity. This is similar to the historic and well-defined neighborhood zones
in places like Chicago and Pittsburgh. Similar to the cluster analysis above, the following cell
creates a regionalization solution, grouping observations in Los Angeles into categories that
are both socially and spatially distinct using a spatially-constrained hierarchical clustering
algorithm (with Ward’s linkage).
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# collect data for Los Angeles county
la = gio.get_acs(datasets, county_fips="06037", years=2021, level="tract")
# generate a regionalization using constrained hierarchical clustering
# return both the dataframe and the ModelResults class
la_ward_reg, la_ward_model = gaz.regionalize(
    gdf=la,
    method="ward_spatial",
    n_clusters=25,
    columns=columns,
    return_model=True,
    spatial_weights="queen",
)
# generate an interactive plot showing the regionalization solution
la_ward_reg[columns + ["geometry", "ward_spatial"]].explore(
    "ward_spatial", categorical=True, cmap="Accent", tiles="CartoDB Positron"
)

2.3.2. Transitional Dynamics:

With geosnap, it’s possible to look at temporal geodemographics without writing much
code. The package provides tools for scaling each dataset within its own time period,
adjusting currency values for inflation, and ensuring that times, variables, and geometries
stay aligned properly. Together those tools make it easy to explore how different portions of
the region transition into different neighborhood types over time, and if desired, model the
evolution of neighborhood change as a spatial Markov process. The following cell creates
a neighborhood typology in Chicago using four mutually exclusive race and ethnicity cate-
gories (defined by the U.S. Census) along with median home values and household incomes,
which yields a set of cluster labels that change over time for each geographic unit. The
plot_timeseries function arranges the maps of neighborhood category labels in sequential
order.
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# define a set of socioeconomic and demographic variables
columns = ['median_household_income', 'median_home_value', 'p_asian_persons', 'p_hispanic_persons',
'p_nonhisp_black_persons', 'p_nonhisp_white_persons']
# create a geodemographic typology using the Chicago data
chicago_ward = cluster(gdf=chicago, columns=columns, method='ward', n_clusters=5)
# plot the result
plot_timeseries(chicago_ward, 'ward', categorical=True, nrows=2, ncols=2, figsize=(12,16))
plt.tight_layout()

In this example, the vast majority of tracts are assigned to the same geodemographic type
in each time period, but some transition into different types over time. The ones that do
transition tend to be those on the edges of large contiguous groups (i.e. change tends to
happen along the periphery and move inward, implying a certain kind of spatial dynamic).
Following, we can also use the sequence of labels to create a spatial Markov transition
model. These models examine how often one neighborhood type transitions into another
type, then how these transition rates change under different conditions of spatial context.
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Here, a key question of interest concerns whether there is spatial patterning in the
observed neighborhood transition. If neighborhood transitions are influenced by what
occurs nearby, then it suggests the potential influence of spatial spillovers. Although there
is nothing ‘natural’ about it, this phenomenon would be akin to classic sociological models
of neighborhood change from the 1920s [32], [33], [34]. Further, if there is evidence that
space matters for transitions, then any attempt to understand neighborhood processes in
this region should also consider the importance of spatial interaction.

A natural way to understand the transition matrix between two neighborhood types is to
plot the observed transition rates as a heatmap. The rows of the matrix define the origin
neighborhoods (i.e. the neighborhood type at 𝑖) and the columns define the “destination”
neighborhood type (the neighborhood type at 𝑗), for each of the types and the values of the
cells are the fraction of transitions between these two types over all time periods:

𝑝𝑖,𝑗 =
𝑛𝑖,𝑗

∑𝑘
𝑘=1 𝑛𝑖,𝑘

(1)

# plot the global and conditional transition matrices
from geosnap.visualize import plot_transition_matrix
plot_transition_matrix(chicago_ward, cluster_col='ward')

The “Global” heatmap in the upper left shows the overall transition rates between all
pairs of neighborhood clusters, and the successive heatmaps show the transition rates
conditional on different spatial contexts. The “Modal Neighbor 0” graph shows how the
transition rates change when the most common unit surrounding the focal unit is Type
0. The strong diagonal across all heatmaps describes the likelihood of stability; that is,
for any neighborhood type, the most common transition is remaining in its same type.
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The fact that the transition matrices are not the same provides superficial evidence that
conditional transition rates may differ. A formal significance test can be conducted using the
returned ModelResults class which stores the fitted model instance from scikit-learn or spopt
and includes some additional diagnostic convenience methods (which shows significantly
different transition dynamics in this example).

Further, the transition rates can be used to simulate future conditions (note this feature
is still experimental). To simulate labels into the future, we determine the spatial context
for each unit (determined by its local neighborhood via a PySAL Graph) and draw a new
label from the conditional transition matrix implied by the units local neighborhood. This
amounts to a simple cellular automata model on an irregular lattice, where there is only a
single (stochastic) transition rule, whose transition probabilities update each round.

2.3.3. Travel Isochrones:

As a package focused on “neighborhoods”, much of the functionality in geosnap is organized
around the concept of ‘endogenous’ neighborhoods. That is, it takes a classical perspective
on neighborhood formation: a “neighborhood” is defined loosely by its social composition,
and the dynamics of residential mobility mean that these neighborhoods can grow, shrink,
or transition entirely.

But two alternative concepts of “neighborhood” are also worth considering. The first,
posited by social scientists, is that each person or household can be conceptualized as
residing in its own neighborhood which extends outward from the person’s household
until some threshold distance. This neighborhood represents the boundary inside which
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we might expect some social interaction to occur with one’s “neighbors”. The second is a
normative concept advocated by architects, urban designers, and planners (arguably still
the goal for new urbanists): that a neighborhood is a discrete pocket of infrastructure
organized as a small, self-contained economic unit. A common shorthand today is the “20
minute neighborhood” [35].

The difference between these two perspectives is what defines the origin of the neighbor-
hood (the “town center” or the person’s home), and whether “neighborhood” is universal
to all neighbors or unique for each resident. Both of them rely abstractly on the concept of
an isochrone: the set of destinations accessible within a specified travel budget. Defining an
isochrone is a network routing problem, but its spatial representation is usually depicted
as a polygon that encloses the set of reachable locations. That polygon is also sometimes
called a walk-shed (or bike/transit/commute etc. “shed”, depending on the particular mode
of travel). For the person at the center of the isochrone, whose “neighborhood” the
isochrone represents, the polygon is sometimes conceived as an “egohood” or “bespoke
neighborhood” [5], [36], [37].

Urban transportation planning often adopts the term “isochrone” referring to a line of equal
time that demarcates an extent reachable within a certain travel budget (e.g. the “20 minute
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neighborhood” can be depicted as a 20-minute isochrone of equal travel time from a given
origin. Travel isochrones are a useful method for visualizing these bespoke concepts of the
“neighborhood”, but they can be computationally difficult to create because they require
rapid calculation of shortest-path distances in large travel networks. Fortunately, a travel
network is a special kind of network graph, and routing through the graph can be increased
dramatically using pre-processing techniques known as contraction hierarchies that elim-
inate inconsequential nodes from the routing problem [38]. geosnap uses the pandana library
[39] which provides a Python interface to the contraction hierarchies routine and works
extremely fast on large travel networks. This means geosnap can construct isochrones from
massive network datasets in only a few seconds, thanks to pandana.

# download an openstreetmap network of the San Diego region
import quilt3 as q3
b = q3.Bucket("s3://spatial-ucr")
b.fetch("osm/metro_networks_8k/41740.h5", "./41740.h5")
# create a (routeable) pandana Network object
sd_network = pdna.Network.from_hdf5("41740.h5")
# select a single intersection as an example
example_origin = 1985327805
# create an isochrone polygon
iso = isochrones_from_id(example_origin, sd_network, threshold=1600 ) # network is expressed in meters
iso.explore()

These accessibility isochrones can then be used as primitive units of inquiry in further
spatial analysis. For example the isochrones can be conceived as “service areas” that define
a reachable threshold accessible from a given provider (e.g., healthcare, social services, or
healthy food).

2.4. Conclusion

In this paper we introduce the motivation and foundational design principles of the
geospatial neighborhood analysis package geosnap. Intended for researchers, public policy
professionals, urban planners, and spatial market analysts, among others, the package
allows for rapid development and exploration of different models of “neighborhood”. This
includes tools for data ingestion and filtering from commonly-used public datasets in the
U.S., as well as tools for boundary harmonization, transition modeling, and travel-time
visualization (all of which are applicable anywhere on the globe).
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Abstract

Harmful algal blooms (HABs) pose major health risks to human and aquatic life. Remote
sensing-based methods exist to automatically detect large, slow-moving HABs in the ocean,
but fall short for smaller, more dynamic blooms in critical inland water bodies like lakes,
reservoirs, and rivers.

CyFi is an open-source Python package that enables detection of cyanobacteria in inland
water bodies using 10-30m Sentinel-2 imagery and a computationally efficient tree-based
machine learning model. CyFi enables water quality and public health managers to conduct
high level assessments of water bodies of interest and identify regions in which to target
monitoring and responsive actions to protect public health.

CyFi was developed in three phases. A machine learning competition leveraged the diverse
skills and creativity of data science experts to surface promising approaches for cyanobac-
teria detection from remote sensed data. Subsequent user interviews and model iteration
resulted in a deployment-ready open-source package designed to meet user workflow needs
and decision-making priorities. This process illustrates a replicable pathway for developing
powerful machine learning tools in domain-specific areas.

Keywords Cyanobacteria, Sentinel-2, Machine Learning, Harmful Algal Blooms, Remote
Sensing

1. Introduction
Inland water bodies provide a variety of critical services for both human and aquatic life,
including drinking water, recreational and economic opportunities, and marine habitats.
Harmful algal blooms (HABs) pose a significant risk to these inland bodies, producing
toxins that are poisonous to humans and their pets and threatening marine ecosystems by
blocking sunlight and oxygen. Such threats require water quality managers to monitor for
the presence of HABs and to make urgent decisions around public health warnings and
closures when they are detected.

The most common source of HABs in freshwater environments is cyanobacteria, or blue-
green algae [1]. While there are established methods for using satellite imagery to detect
cyanobacteria in larger water bodies like oceans, detection in small inland lakes, reservoirs,
and rivers remains a challenge. Manual water sampling is accurate, but is too time and
resource intensive to perform continuously at scale. Machine learning models, on the other
hand, can generate estimates in seconds. Automatic detection enables water managers to
better prioritize limited manual sampling resources and can provide a birds-eye view of
water conditions across a region [2]. Machine learning is particularly well-suited to this task
because indicators of cyanobacteria are visible in free, routinely collected satellite imagery.
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We present CyFi, short for Cyanobacteria Finder, an open-source Python package that uses
satellite imagery and machine learning to estimate cyanobacteria levels in inland water
bodies [3]. CyFi helps decision makers protect the public by flagging the highest-risk areas in
lakes, reservoirs, and rivers quickly and easily. CyFi represents a significant advancement
in environmental monitoring, providing higher-resolution detection capabilities that can
pinpoint areas at risk of cyanobacterial contamination. Key strengths of CyFi compared to
other tools include:

• Features derived from high-resolution Sentinel-2 satellite data
• A fast and computationally efficient boosted tree machine learning algorithm
• A straightforward command line interface
• A unique training dataset of almost 13,000 cyanobacteria ground measurements

across the continental U.S.

This paper presents a detailed examination of the development of CyFi, from its origins in a
machine learning competition to an open source package. The methods section explores the
setup of the prize competition, the subsequent model experimentation phase that built on
winning approaches, and the end user interviews that helped shape CyFi with real-world
context. The results section provides insights on the machine learning methods that proved
most effective for detecting inland HABs, and details CyFi’s underlying methodology, core
capabilities, and model performance. Finally, the discussion section reflects the primary
ways CyFi can augment human decision making workflows to protect public health and
notes areas for future research.

2. Motivation

There are tens of thousands of lakes that matter for recreation and drinking water.
Cyanobacterial blooms pose real risks in many of them, and we really don’t know when
or where they show up, except in the largest lakes.
— Dr. Rick Stumpf, Oceanographer, NOAA, National Centers for Coastal Ocean Science¹

Harmful algal blooms are a pressing environmental and public health issue, characterized
by the rapid and excessive growth of algae in water bodies. These blooms can produce
toxins, such as microcystins and anatoxins, that pose severe risks to human health, aquatic
ecosystems, and local economies [5].

The toxins released by HABs can contaminate drinking water supplies, leading to acute and
chronic health problems for communities [6]. Exposure to these toxins through ingestion,
skin contact, or inhalation can result in a variety of acute and chronic health issues,
including gastrointestinal illnesses, liver damage, neurological effects, and even death in
extreme cases [7].

Ecologically, HABS can create hypoxic (low oxygen) conditions in water bodies, resulting
in massive fish kills and the disruption of aquatic food webs [8]. HABs can form dense
algal mats that block sunlight, inhibiting the growth of submerged vegetation essential for
aquatic habitats. Furthermore, the decomposition of large algal blooms consumes signifi-
cant amounts of dissolved oxygen, exacerbating oxygen depletion and leading to dead zones
where most aquatic life cannot survive.

These ecological impacts can have devastating economic consequences for local industries
reliant on water resources, such as fisheries, tourism, and recreation. Beaches and lakeside
areas affected by algal blooms often face closures, leading to a loss of revenue. The cost

¹DrivenData [4]
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Figure 1.  An example of a water body at 10m resolution

of managing and mitigating the effects of HABs, including water treatment and healthcare
expenses, places additional financial burdens on affected communities [9], [10].

Despite the severe consequences of HABs, existing monitoring tools and methods are often
insufficient. Traditional approaches, such as manual water sampling and laboratory analy-
sis, are time-consuming, labor-intensive, and provide only localized snapshots of water
quality.

Existing satellite-based monitoring tools offer broad coverage but fall short of the spatial
resolution needed for small inland water bodies. Most are aimed at monitoring blooms in
the ocean, which are larger and slower moving. Many of the leading satellite-based methods
for cyanobacteria detection rely on chlorophyll estimates using the Ocean and Land Colour
Instrument (OLCI) on Sentinel-3 [11]. However, the coarse 300m resolution of Sentinel-3
only recognizes approximately 5% of inland water bodies in the continental U.S. [12] and
therefore is not able to provide the data needed for effective early warning and rapid
response to HAB outbreaks in lakes, reservoirs, and rivers. In addition, chlorophyll is an
imperfect proxy for cyanobacteria as all types of algae contain chlorophyll-a, including non-
harmful blooms [13].

The effects of climate change are likely to increase both the frequency and severity of
HABs in inland water bodies. Warmer water temperatures, higher concentrations of carbon
dioxide, runoff and coastal upswelling related to extreme weather events, and sea level
rise can all contribute to making freshwater nutrients levels and environmental conditions
more conducive to the growth of harmful algae [14].

Effectively monitoring inland HABs and protecting public health requires developing new
innovative tools that capture a higher spatial resolution, can be run quickly and frequently,

Figure 2.  An example of the Figure 1 image at 300m resolution
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and are accessible to decision makers. CyFi aims to fill this gap by incorporating higher-
resolution satellite imagery, an efficient tree-based model, and a user-friendly command
line interface.

3. Methods

3.1. Machine learning competition

The machine learning approach in CyFi was originally developed as part of the Tick Tick
Bloom: Harmful Algal Detection Challenge, which ran from December 2022 to February
2023 [4]. Machine learning competitions can harness the power of community-driven inno-
vation and rapidly test a wide variety of possible data sources, model architectures, and
features [15], [16], [17]. Tick Tick Bloom was created by DrivenData on behalf of NASA and
in collaboration with NOAA, the U.S. Environmental Protection Agency, the U.S. Geological
Survey, the U.S. Department of Defense Defense Innovation Unit, Berkeley AI Research, and
Microsoft AI for Earth.

In the Tick Tick Bloom challenge, over 1,300 participants competed to detect cyanobacte-
ria blooms in small, inland water bodies using publicly available satellite, climate, and
elevation data. Models were trained and evaluated using a set of manually collected water
samples that had been analyzed for cyanobacteria density. Labels were sourced from 14
data providers across the U.S., shown in Figure 3. The full dataset containing 23,570 in situ
cyanobacteria measurements is publicly available through the SeaBASS data archive [18].
Each observation in the dataset is a unique combination of date, latitude, and longitude.

The labels were divided into train and set sets, where 17,060 train labels were provided to
participants and 6,510 test labels were used to evaluate model performance and kept confi-
dential from participants. Lakes in close proximity can experience similar bloom-forming
conditions, presenting a risk of leakage. To address this, clustering methods were used to
maximize the distance between every train set point and every test set point, decreasing
the likelihood that participants could gain insight into any test point density based on the
training set. Scikit-learn’s DBSCAN algorithm [19], [20] was used to divide all data points
into spatial clusters. Each cluster was then randomly assigned to either the train or test
dataset, such that no test data point was within 15 kilometers of a train data point.

Participants predicted a severity category for a given sampling point as shown in Table 1.
These ranges were informed by EPA and WHO guidelines [21], [22].

Predictions were evaluated using region-averaged root mean squared error. Averaging
across regions incentivized models to perform well across the continental U.S., rather than
in certain states that were over-represented in the competition dataset (such as California

Figure 3.  Labeled samples used in the Tick Tick Bloom competition colored by dataset provider.
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Table 1.  Severity categories used in the Tick Tick Bloom competition

Severity level Cyanobacteria density range (cells/mL)

1 <20,000

2 20,000 – <100,000

3 100,000 – <1,000,000

4 1,000,000 – <10,000,000

5 ≥10,000,000

and North Carolina). Over 900 submissions across 115 teams were made over the course of
the competition.

3.2. Carrying forward competition models

Machine learning competitions are excellent for crowd-sourcing top approaches to complex
predictive modeling problems. Over a short period of time, a large community of solvers
tests a broad feature space including possible data sources, model architectures, and model
features. The result is an open-source github repository with code from the most effective
approaches, trained model weights, and write-ups of winning methods.

However, transforming this research code into production code requires significant addi-
tional work. There are a few key differences between competition-winning research
approaches and deployable code:

1. The competition relies on static data exported and processed once while deployment
requires repeated, automatic use with new data.

2. Winning models are relatively unconstrained by the size and cost of their solutions.
For ongoing use, efficiency matters.

3. Competition code is validated once with anticipated, clean data and static versions
of Python package dependencies. In the real world things break and change; use
requires basic robustness, testing and configurability.

4. There is substantial variability in the clarity and organization of competition-winning
code. Usable code requires others to be able to understand, maintain, and build on
the codebase.

The end goal is regularly generated predictions of cyanobacteria levels surfaced in user-
friendly dashboards to water quality managers. To achieve this, the intermediate require-
ment is a deployment-ready code package. This package is CyFi, a configurable, open-source
Python library capable of generating cyanobacteria predictions on new input data.

3.2.1. Model experimentation:

CyFi was developed through an additional model experimentation phase, which combined
and iterated on the most useful pieces from competition-winning models, and simplified
and restructured code to transform it into a runnable pipeline.² Additional model testing
helped determine which winning approaches were the most robust, accurate, and general-
izable outside of the competition setting.

The table below summarizes the matrix of experiments that were conducted. Model exper-
imentation informed key decisions around which data sources were used, how satellite
imagery was selected and processed, and which target variable was predicted.

²The authors would like to thank Yang Xu, Andrew Wheeler, and Raphael Kimina, the Tick Tick Bloom
competition winners whose modeling approaches provided the foundation for CyFi.
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Figure 4.  Model experimentation summary, with final selections in bold.

During experimentation the Section 3.1 train-test split was maintained, but samples prior
to the launch of Sentinel-2 as well as sampling points more than 550m away from a water
body were removed, as outlined in Table 3. This resulted in a final train set size of 8,979
points and a test set size of 4,035 points.

StratifiedGroupKFold was used to create five train and validation folds stratified on region
(cyfi/pipeline.py) and a model was trained on each fold. Predictions are averaged across the
five models. Early stopping based on performance on the validation set was used to prevent
overfitting.

Performance on the test set was evaluated based on a combination of root mean squared
error, mean absolute error, mean absolute percentage error, and regional root mean
squared error, along with manual review and visualizations of predictions. Standard best
practices were used to inform hyperparameters tuning for the final model.

3.2.2. User interviews:

To design a package that optimally addresses on-the-ground user needs, we conducted
human-centered design (HCD) interviews with subject matter experts and end users.
Interviewees included water quality and public health experts from California, New York,
Georgia, Louisiana, Florida, and Michigan. Representatives from these states were selected
to understand workflows and priorities, and capture a diversity of geographic locations,
number of water bodies in the region, HAB severity, investment in HABs monitoring, and
technical sophistication of current approaches. User interviews focused on understanding
current water quality decision-making processes, including the data and tools used to sup-
port those decisions. Learnings were used to inform the format for surfacing predictions,
priorities in model performance, and computational constraints. Table 6 summarizes the
core design decisions for CyFi that were rooted in insights from user interviews.

4. Results

4.1. Competition takeaways

The overarching goal of the Section 3.1 was to identify the most useful data sources, features,
and modeling methods for cyanobacteria estimation in small, inland water bodies. There
was particular interest around the use of Sentinel-2 data, which has significantly higher
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Table 2.  Data sources used by Tick Tick Bloom competition winners

Landsat
Satellite

Sentinel 2
Satellite

HRRR
Climate data

Copernicus DEM
Elevation

Metadata
Time, location

1st Place ✔
Color value statistics

✔
Temperature

✔
Region
Location

2nd Place ✔
Color value statistics

✔ ✔
Clustered location

3rd Place ✔
Color value statistics

✔
Color value statistics

✔
Temperature
Humidity

✔
Longitude

resolution than Sentinel-3 and is more suited to smaller water bodies. However, Sentinel-2
does not contain the bands historically used to derive cyanobacteria estimates.

The competition showed that Sentinel-2 bands contain sufficient information for generating
accurate cyanobacteria estimates with machine learning. Below is a summary of which
datasets were used by winners.

All winners used Level-2 satellite imagery instead of Level-1, likely because it already
includes useful atmospheric corrections. Sentinel-2 data is higher resolution than Landsat,
and proved to be more useful in modeling.

All winners also used gradient boosted decision tree models such as LightGBM [23], XGBoost
[24], and CatBoost [25]. First place explored training a CNN model but found the coarse
resolution of the satellite imagery overly constraining, particularly when using Landsat
imagery. Despite deep learning models often being thought of as the go-to for image data,
decision tree models can work particularly well with satellite imagery where the task is
point estimation rather than segmentation.³ Decision tree models also have a number of
advantages over deep learning models as they boast faster training and inference, do not
require a GPU, and provide greater interpretability. This enables more rapid experimenta-
tion and iteration in training and supports near real-time inference using limited compute.

4.2. Model experimentation takeaways

The Section 3.2.1 phase did not explore alternate model architectures given how clearly
the competition surfaced the success of a gradient boosted tree model [26]. It did however
extensively iterate on other parts of the pipeline. Over 30 configurations were tested to
identify the optimal setup for training a robust, generalizable model. Below are the core
decisions that resulted from model experimentation and retraining.

4.2.1. Data decisions:

One of the risks in a machine learning competition is overfitting to the test set. Competition
models may pick up on patterns specific to the competition data, rather than patterns of
environmental cyanobacteria conditions that generalize outside of the competition. The
experimentation phase worked to identify and remove competition artifacts that would
hamper the generalizability of the model in an open source package. For example, all win-
ning solutions used a “longitude” feature in their models, which captured some underlying
differences in sampling procedures by the 14 data providers for the competition. For exam-
ple, data-providing organizations in California only conduct toxin analysis for suspected

³The success of decision tree models in the Tick Tick Bloom competition is consistent with other
DrivenData competitions where the task was point-based prediction from satellite imagery (i.e.,
estimating the amount of water in snowpack and estimating levels of air pollution).
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Table 3.  Data decisions from model experimentation

Decision Explanation

Filter points farther than 550m from a water
body

A small amount of noise in the competition
dataset was caused by a combination of human
error, GPS device error, or a lack of adequate
precision in recorded latitude and longitude. Ex-
cluding points that are farther than 500m from
a water body helps ensure that the model learns
from real-world environmental characteristics
of cyanobacteria blooms rather than patterns in
human error (see below for additional details).
Applying this filter decreased the train set size
from 17,060 to 11,299 and the test set size from
6,510 to 4,938.

Use Sentinel-2 as the sole satellite source Landsat data primarily only added value for the
time period prior to July 2015, when Sentinel-2
data became available. Most applications of CyFi
will be forward looking, meaning Sentinel-2 data
will be available. As the slowest part of the
prediction process is downloading satellite data,
incorporating Landsat as a second data source
would impose a significant efficiency cost. To
rely only on Sentinel-2, any samples prior to
the launch of Sentinel-2 were removed from
the training and evaluation sets. This further
decreased the train set size from 11,299 to 8,979
and the test set size from 4,938 to 4,035.

Exclude climate and elevation features Climate and elevation features primarily pro-
vided value for data points prior to the launch
of Sentinel-2 and so are not used in the final
CyFi model. Climate and elevation likely do have
an impact on how cyanobacteria blooms form,
and more sophisticated feature engineering with
these data sources may add value in the future.
This is a direction for Section 5.0.2.

Incorporate land cover Including a land cover map, even at a coarse
300m resolution, aided model accuracy. The land
cover map captures farmland areas with fertil-
izer runoff that contributes to blooms, among
other features. A static map from 2020 is used
rather than a real-time satellite-derived product,
as this reduces the compute time and patterns in
land use do not fluctuate daily. Land cover is also
an effective balance between reflecting regional
characteristics, and avoiding overfitting to the
small number data providers in the training set.

blooms, leading to an over-representation of high density samples among competition data
points in California. Predicting high severity for all points in California served well in the
competition setting, but would not generalize to the real world. As a result, geographic
features like longitude, state, and region were not used for the deployed CyFi model.

Competitions can also surface data quality issues. A number of competition winners pointed
out that upon inspection of satellite imagery, some competition data points appeared to be
outside of any water body. We believe that the small amount of noise in the competition
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dataset was caused by a combination of human error, GPS device error, and a lack of
adequate precision in recorded latitude and longitude.⁴

While it is important to remove points that have erroneous GPS coordinates, it is also the
case that sampling point locations are often recorded from a dock or parking lot near
where the water sample was taken. In these cases, the bounding box around the sampling
point used to generate features would still pick up on relevant water-based characteristics.
Filtering out samples that are far from any water body, and keeping points that are on
land but near water pixels, is the best method to separate relevant data from incorrect
coordinates.

The distance between each sample and the nearest water body was calculated using the
European Space Agency (ESA) WorldCover 10m 2021 product on Google Earth Engine.
Samples farther than 550m from a water body were excluded to help ensure that the
relevant water body fell within the portion of the satellite image from which features were
calculated. The WorldCover dataset was chosen over Sentinel-2′s scene classification band
as the water classification appeared to be more reliable based on visual review of samples.

4.2.2. Satellite feature engineering decisions:

4.2.3. Target variable decisions:

4.3. User interview takeaways

Technical experimentation alone is insufficient to build a tool that effectively addresses
a real-world problem. Understanding user needs and day-to-day processes helps enable
integration with existing workflows and increases the likelihood of adoption. The table
below synthesizes key insights gleaned from Section 3.2.2, and outlines how each insight
supported the development of a user-friendly package.

Table 4.  Satellite feature engineering decisions from model experimentation

Decision Explanation

Filter to water area and use a large bounding box Land pixels are filtered out because they are
usually greener than water areas, and can gen-
erate falsely high cyanobacteria estimates. Sen-
tinel-2′s scene classification band is not perfectly
accurate, but is sufficient for masking non-water
pixels. Since ground sampling points are often
on land but near water (taken from the shore or
the dock), a large bounding box of 2,000m is used
to ensure that relevant water pixels are included.

Use a large look-back window and filter to im-
ages with almost no clouds

When selecting relevant imagery, CyFi uses Sen-
tinel-2′s scene classification band to calculate
the percent of clouds in the bounding box. Any
imagery that has greater than 5% clouds is not
used. CyFi combines a relatively large look-back
window of 30 days before the sample with this
strict cloud threshold to increase the chances of
finding a cloud-free image.

Use only one image per sample point Some winning solutions averaged predictions
over multiple satellite images within a specified
range. We find that this favors static blooms.
We use only the most recent cloud-free image to
better detect short-lived blooms.

⁴At the equator, a longitude value to 2 decimal degrees is only accurate to around a 1km distance [27].
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Table 5.  Target variable decisions from model experimentation

Decision Explanation

Estimate density instead of severity We learned during user interviews that states use differ-
ent thresholds for action, so predicting density instead of
severity categories supports a broader range of use cases.
The winning competition models were trained to predict
severity. During experimentation, we validated that there
was sufficient signal to predict at the higher granularity of
exact density.

Train the model to predict log density We find transforming density into a log scale for model
training and prediction yields better accuracy, as the under-
lying data is highly skewed. About 75% of samples have
a density less than 400,000 cell/mL, but there are extreme
densities into the tens of millions cells/mL. A log scale helps
the model learn that incorrectly estimating a density of
100,000 when the true density is 0 is much more important
than incorrectly estimating a density of 1,100,000 when the
true density is 1,000,000. The estimate a user sees has been
converted back into (non-log) density.

4.4. CyFi

The culmination of the machine learning competition, subsequent model experimentation,
and user interviews is CyFi. CyFi, short for Cyanobacteria Finder, is an open-source Python
package that uses satellite imagery and machine learning to detect cyanobacteria levels,
one type of HAB. CyFi can help decision makers protect the public by flagging the highest-
risk areas in lakes, reservoirs, and rivers quickly and easily. CyFi incorporates open-source
best practices, including tests and continuous integration, and is ready for use in state-level
dashboards and decision-making processes.

4.4.1. Data sources:

CyFi relies on two data sources as input:

1. Sentinel-2 satellite imagery

Table 6.  CyFi design decisions rooted in HCD interviews

Interview insight CyFi design decision

States tend to have designated sampling loca-
tions or locations of reported blooms. Coverage
of the full area of a water body is nice but not
necessary.

CyFi will expect sampling points as input rather
than polygons, and the output will be point-esti-
mates rather than a gridded heatmap.

Thresholds are not universal and actions vary by
state.

Prediction will be a density value rather than
severity category.

While blooms in small water bodies can change
quickly, the maximum cyanobacteria estimation
cadence is daily.

A sampling point will be a unique combination
of date, latitude, and longitude. Additional time
granularity is not needed.

Many states include a visual review of imagery
(satellite or submitted photo) as part of the deci-
sion-making process.

CyFi will include a way to see the underlying
satellite data for a given prediction point, to help
users build confidence and intuition around the
CyFi model.

States have their own tools for managing water
quality data (e.g. ground samples and lab re-
sults).

CyFi will output a simple CSV file that includes
identifying columns for joining with external
data.
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2. Land cover classifications

Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission. The Sentinel-2
Multispectral Instrument (MSI) samples 13 spectral bands: four bands at 10 meters, six
bands at 20 meters, and three bands at 60 meters spatial resolution. The mission provides
global coverage of the Earth’s land surface every 5 days. Sentinel-2 data is accessed through
Microsoft’s Planetary Computer.

CyFi uses high-resolution Sentinel-2 satellite imagery (10-30m) to focus on smaller water
bodies with rapidly changing blooms. This is a significant improvement in resolution over
Sentinel-3, which is used by most existing satellite-based cyanobacteria detection tools and
has a resolution of 300-500m.

The Climate Research Data Package Land Cover Gridded Map (2020) categorizes land
surface into 22 classes, which have been defined using the United Nations Food and Agri-
culture Organization’s Land Cover Classification System (LCCS). The map is based on data
from the Medium Resolution Imaging Spectrometer (MERIS) sensor on board the polar-
orbiting Envisat-1 environmental research satellite by the European Space Agency. CyFi
accesses the data using the CCI-LC database hosted by the ESA Climate Change Initiative’s
Land Cover project.

4.4.2. Feature processing:

Each observation (or “sampling point”) is a unique combination of date, latitude, and
longitude. Feature generation for each observation is as follows:

1. Download up to 15 relevant Sentinel-2 tiles based on a bounding box of 2,000m
around the sampling point and a time range of 30 days prior to (and including) the
sampling date.

2. Select the most recent image that has a bounding box containing less than 5% cloud
pixels. If none of the images meet this criteria, no prediction is made for that sampling
point.

3. Filter the pixels in the bounding box to the water area using the scene classification
(SCL) band.

4. Generate band summary statistics (e.g., mean, 95th percentile) and ratios (e.g, green-
blue ratio, NDVI) using 15 different Sentinel-2 bands. The full list of satellite image
features is here: cyfi/config.py

5. Calculate two satellite metadata features: 1) the month of selected satellite image and
2) the number of days between the sampling date and the satellite image capture.

6. Look up static land cover map data for the sampling point, and combine land cover
information with satellite features.

4.4.3. Model:

Cyanobacteria estimates are generated by a gradient-boosted decision tree algorithm built
with LightGBM [23]. The hyperparameters can be found here: cyfi/config.py.

The model was trained and evaluated using “in situ” labels collected manually by many
organizations across the U.S. The train-test split was maintained from the Section 3.1, with
Section 4.2.1 to remove samples prior to the launch of Sentinel-2 or more than 550m from
a water body.

CyFi was ultimately trained on 5,721 of the 8,979 train set observations due to satellite
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Figure 5.  Mock up of satellite data selection and processing. The dot represents the sample point; the
square represents the 2,000m bounding box around the sample point. The multiple squares outlined in
black represents the multiple satellite image contenders within the lookback period. The orange outlined
square indicates the selected, most-recent satellite image. The blue shaded area indicates the water pixels
in the bounding box from which features are calculated.

Note that not all features are represented in the columns. The table above shows a few features calculated
based on the B01 (aerosol), B02 (blue), B03 (green), B04 (red), and B05 (red edge) Sentinel-2 bands.

Figure 6.  Location and distribution of training and evaluation data for CyFi.
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Figure 7.  Counts of cyanobacteria measurements by data provider in the evaluation set.

imagery availability.⁵

4.4.4. Performance:

CyFi was evaluated using 2,880 ground measurements from 12 data providers spanning the
time range August 2015 to December 2021.⁶ Given that CyFi relies on Sentinel-2 imagery,
the earliest date in the evaluation set aligns with the launch of Sentinel-2 (mid 2015). Of
these points, 1,153 were low severity, 504 were moderate severity, and 1,223 were high
severity according to ground measurement data. Some states only conduct toxin analysis
when blooms are suspected, which may account for the large number of high-severity
observations in the evaluation set.

We use the following categories based on World Health Organization [22] for evaluation:

• Non-bloom: Cyanobacteria density is less than 20,000 cells/mL
• Bloom: Cyanobacteria density is at least 20,000 cells/mL
• Severe bloom: Cyanobacteria density is greater than 100,000 cells/mL. Severe blooms

are a subset of blooms

On this evaluation dataset, CyFi detects 48% of non-blooms with 63% precision. Being able
to detect places not likely to contain blooms enables ground sampling staff to de-prioritize
low-risk sampled locations and better allocate limited resources.

CyFi detects 81% of blooms with 70% precision. Based on user interviews, moderate blooms
are important to identify because they should be prioritized for sampling. There may be
negative public health impacts and more precise toxin analysis is needed.

Lastly, CyFi detect 53% of severe blooms with 71% precision. These locations pose the
highest risk of severe negative health impacts, and are critical to flag for decision makers
to prioritize for public health action (e.g., issuing advisories). In the most severe cases,
additional visual inspection of the satellite imagery used by CyFi may be sufficient to
issue an advisory without additional sampling. CyFi enables this step with its Section 4.4.7
functionality.

⁵CyFi did not use the remaining 3,258 points in the train set due to a lack of valid satellite data. In order
to generate features, there must be at least one satellite image within 30 days prior to the sampling date
where cloud pixels account for less than 5% of the pixels in the bounding box around the sampling point.

⁶CyFi did not produce cyanobacteria estimates for the remaining 1,155 points in the test set due to a
lack of valid satellite data. In order to produce an estimate, there must be at least one satellite image
within 30 days prior to the sampling date where cloud pixels account for less than 5% of the pixels in the
bounding box around the sampling point.
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Table 7.  CyFi estimates compared to ground truth advisory level for out-of-sample California data from
2023

This table shows the promise of CyFi in relative ordering of points by severity level as well as the limita-
tions of absolute predicted values. Predicted density correctly increases with the severity of the advisory
level, although absolute density is generally overestimated. For example, the expected density range is
0-20,000 cells/mL for “No bloom” and 20,000-100,000 cells/mL for “Caution” based on World Health
Organization guidelines. California data in the training set was heavily biased toward severe blooms due
to California’s sampling protocols, likely driving this overestimation. A promising mitigation strategy is
the inclusion of more true negative points from California in the training data.

Ground truth advisory level Median predicted cyanobacteria density

No bloom 92,560 cells/mL

Caution 206,923 cells/mL

Warning / Danger 295,558 cells/mL

Model accuracy can vary based on bloom severity as well as location and other attributes
of the sampling point, so the performance metrics above will vary based on the distribution
in the evaluation set. After concluding the model experimentation phase, we conducted a
small out-of-sample evaluation using new data collected by California during summer 2023
(231 total observations). We found that estimated cyanobacteria densities increased with
the severity of the advisory level that was issued. While the relative ordering of points based
on estimated severity was promising, absolute cyanobacteria densities were consistently
overestimated. This reinforces that the main immediate use case of CyFi is to identify
comparatively higher and lower priority areas, and to inform rather than replace ground
sampling activities.

4.4.5. Benchmark comparison:

An apples-to-apples comparison with one of the leading tools for cyanobacteria estima-
tion from satellite imagery is provided as a more objective benchmark of performance.
The Cyanobacteria Index was developed through the Cyanobacteria Assessment Network
(CyAN). It is based on a spectral shape algorithm that relates to chlorophyll absorption,
initially using Sentinel-3′s MERIS and now using OLCI [28], [29], [30], [31].

Due to lower resolution of satellite imagery as well as missing data, CyAN’s Cyanobacteria
Index is only able to provide estimates for 30% of points in the evaluation set described in
Figure 7 (756 points). A major advantage of CyFi is coverage of small water bodies. Over
half of the points in the evaluation set were identified as “land” by CyAN due to the coarse
resolution of Sentinel-3 imagery. An additional 18% of points had “no data” likely due to
clouds or bad imagery.

Among the portion of the evaluation set captured by CyAN, CyFi detects blooms with slightly
higher accuracy. Using a cutoff of 10,000 cells/mL per S. Mishra, R. P. Stumpf, B. Schaeffer, P.
J. Werdell, K. A. Loftin, and A. Meredith [32], we find CyFi has a presence/absence accuracy
of 72% compared to 66% for CyAN. The improved accuracy is largely due to a higher correct
classification of true positive cases (blooms).

CyFi correctly identifies 306 of 389 blooms, while CyAN correctly identifies 169 (true posi-
tives). CyFi correctly identifies 241 of 367 non-blooms, while CyAN correctly identifies 332
(true negatives).

This performance shows that CyFi offers similar accuracy as a leading tool but at 10m
resolution instead of 300m. This dramatic increase in spatial granularity enables remote
sensing-based bloom detection in small, inland water bodies across the U.S.
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Figure 8.  A comparison of CyFi and CyAN model accuracy on 756 ground sampled data points from
across the U.S. A true positive (bloom presence) is where cyanobacteria density > 10,000 cells/mL.

4.4.6. Using CyFi:

Comprehensive instructions for using CyFi can be found in the CyFi docs. The below
provides an overview of some of CyFi’s key functionality.

CyFi is designed to be simple to use. To get started, users can install CyFi with pip.⁷

$ pip install cyfi

Cyanobacteria predictions can then be generated with a single command. The only infor-
mation needed to generate a prediction is a location (latitude and longitude) and date.

$ cyfi predict-point --lat 35.6 --lon -78.7 --date 2023-09-25

SUCCESS  | Estimate generated:
date                    2023-09-25
latitude                      35.6
longitude                    -78.7
density_cells_per_ml        22,836
severity                  moderate

For each sampling point, CyFi downloads recent cloud-free Sentinel-2 data from Microsoft’s
Planetary Computer, calculates a set of summary statistics using the spectral bands for the
portion of the image around the sampling point, and passes those features to a LightGBM
model which produces an estimated cyanobacteria density.

CyFi also makes it easy to generate cyanobacteria estimates for many points at once. Users
can input a CSV with columns for date, latitude, and longitude.

A CSV input can also be processed with a single command.

⁷Alternatively, CyFi can be installed with conda (conda install -c conda-forge cyfi), which is
recommended for M1 Mac users as of July 2024 due to a known issue with the pip installation of
LightGBM.
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Table 9.  CyFi outputted csv (preds.csv) containing predictions

sample_id date latitude longitude density_cells_per_ml severity

7ff4b4a56965d80f6aa501cc25aa1883 2023-06-22 41.424144 −73.206937 34,173 moderate

882b9804a3e28d8805f98432a1a9d9af 2023-07-01 36.045 −79.0919415 7,701 low

10468e709dcb6133d19a230419efbb24 2023-08-04 35.884524 −78.953997 4,053 low

Table 8.  Example input csv (samples.csv) containing the sampling points where cyanobacteria estimates
are needed

latitude longitude date

41.424144 −73.206937 2023-06-22

36.045 −79.0919415 2023-07-01

35.884524 −78.953997 2023-08-04

$ cyfi predict samples.csv

SUCCESS  | Loaded 3 sample points (unique combinations of date, latitude, and longitude) for prediction
SUCCESS  | Downloaded satellite imagery
SUCCESS  | Cyanobacteria estimates for 4 sample points saved to preds.csv

Cyanobacteria estimates are saved out as a CSV that can be plugged into any existing
decision-making process. For each point, the model provides an estimated density in cells
per mL for detailed analysis. Densities are also discretized into severity levels based on
World Health Organization guidelines [22].

4.4.7. CyFi Explorer:

CyFi also comes with a visualization tool called CyFi Explorer. CyFi Explorer surfaces the
corresponding Sentinel-2 imagery for each cyanobacteria estimate. The explorer runs a
Gradio app locally on the user’s machine and is intended to enable visual inspection of
where the model is performing well, as well as edge cases or failure modes. It is not intended
to replace more robust data analytics tools and decision-making workflows.

5. Discussion
CyFi’s progression from a machine learning competition that surfaced promising ap-
proaches, through subsequent user interviews and model iteration, to a deployment-ready
open source package illustrates a replicable pathway for developing powerful machine
learning tools in domain-specific areas.

We find that CyFi performs at least as well as a leading Sentinel-3 based tool, but has
significantly greater coverage of water bodies across the U.S. due to the higher resolution

Table 10.  WHO Recreational Guidance/Action Levels for Cyanobacteria [22]

Relative Probability of Acute Health Effects Cyanobacteria (cells/mL)

Low < 20,000

Moderate 20,000–100,000

High > 100,000–10,000,000

Very High > 10,000,000
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Figure 9.  Screenshot of CyFi Explorer, a visualization tool that surfaces the underlying satellite imagery
used to generate the cyanobacteria estimate.

of Sentinel-2 data. This dramatically expands the applicability of remote sensing-based
estimates as a tool for management of HABs.

5.0.1. Implications for use:

CyFi works best as an enhancement to existing decision-making processes through its
ability to surface high and low priority areas. At its current accuracy level, we believe CyFi
should be used to inform human workflows rather than triggering automatic actions.

Based on discussions with end users, a few common use cases for CyFi are listed below.
Overall, CyFi supports more widespread and timely public health actions, better allocation
of ground sampling resources, and more informed impairment and regulatory monitoring.

1. Flag high severity blooms for public health action

High concentrations of cyanobacteria often merit public health interventions. Having
daily estimates at designated sampling points can quickly and easily surface worrisome
conditions. States have the flexibility to design their own processes for how to use this
information. For example, some states may choose to prioritize these locations for ground
sampling where advisory levels are dependent upon toxin analysis results. Other states
may choose to take action such as issuing a press release based on visual review of imagery
alone.

1. Identify locations where ground sampling can be deprioritized

Identifying water bodies that are not experiencing blooms can be just as helpful as identi-
fying water bodies that are. Ground sampling is time and labor intensive, and CyFi enables
water quality managers to deprioritize sampling in the areas least likely to contain blooms.

1. Confirm publicly reported blooms with more data
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Multiple states rely on visual inspection of a submitted photo to confirm a bloom. CyFi can
both generate a cyanobacteria density estimate and show the most recent, cloud free 10m
satellite imagery for that location.

1. Provide a birds-eye view of lake conditions across the state

Many states track impaired and threatened waters in accordance with the Clean Water Act
and develop total maximum daily loads (TMDLs), which specify the maximum amount of
pollutant allowed to enter a water body. Routine predictions from CyFi can help monitor
the progression in water bodies where cyanobacteria is a primary concern.

5.0.2. Future directions:

While CyFi represents a significant step forward in detecting cyanobacteria from satellite
imagery, challenges remain. CyFi is the least reliable for the following cases:

• In very narrow or small waterways
• When there are clouds obscuring the area around a sampling point
• Where multiple water bodies are nearby in the same satellite image

Model performance could be improved by retraining with additional ground measure-
ments for true negative cases, adding water body segmentation to exclude pixels from
non-contiguous water bodies, and adding cloud segmentation to remove cloud pixels from
feature calculations. Additionally, incorporating more sophisticated time-series climate fea-
tures may enhance model accuracy. To support users who desire comprehensive estimates
across an entire water body, a pre-processing step could be added that accepts a water body
polygon as input and transforms this into a grid of sample points.

As decision-makers begin experimenting with CyFi, we recommend calculating historical
estimates and comparing these against prior ground measurements to get a baseline accu-
racy for CyFi’s performance. Using CyFi Explorer to review predictions can provide further
insight into water bodies that may be particularly challenging for CyFi.

6. Conclusion
CyFi is a powerful tool for identifying high and low levels of cyanobacteria, and enables
humans to make more timely and targeted decisions when issuing public health guidance
around current cyanobacteria levels. Areas with low-density cyanobacteria counts can be
excluded from ground sampling to better prioritize limited resources, while areas with
high-density cyanobacteria counts can be prioritized for public health action. The develop-
ment of CyFi illustrates the utility of machine learning competitions as a first step toward
open source tools. CyFi’s primary use cases show how machine learning can be incorpo-
rated into human workflows to enable more efficient and more informed decision making.
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Abstract

The rise of machine learning (ML) and artificial intelligence (AI), especially the generative
AI (GenAI), has increased the need for wrapping models or algorithms into GUI apps. For
example, a large language model (LLM) can be accessed through a string-to-string GUI app
with a textbox as the primary input. Most of existing solutions require developers to manually
create widgets and link them to arguments/returns of a function individually. This low-level
process is laborious and usually intrusive. Funix automatically selects widgets based on the
types of the arguments and returns of a function according to the type-to-widget mapping
defined in a theme, e.g., bool to a checkbox. Consequently, an existing Python function
can be turned into a GUI app without any code changes. As a transcompiler, Funix allows
type-to-widget mappings to be defined between any Python type and any React component
and its props, liberating Python developers to the frontend world without needing to know
JavaScript/TypeScript. Funix further leverages features in Python or its ecosystem for building
apps in a more Pythonic, intuitive, and effortless manner. With Funix, a developer can make
it (a functional app) before they (competitors) fake it (in Figma or on a napkin).

Keywords type hints, docstrings, transcompiler, frontend development

1. Introduction
Presenting a model or algorithm as a GUI application is a common need in the scientific and
engineering community. For example, a large language model (LLM) is not accessible to the
general public until it is wrapped with a chat interface, consisting of a text input and a text
output. Since most scientists and engineers are not familiar with frontend development,
which is JavaScript/TypeScript-centric, there have been many solutions based on Python,
one of the most popular programming languages in scientific computing, especially AI.
Examples include ipywidgets, Streamlit, Gradio, Reflex, Dash, and PyWebIO. Most of these
solutions follow the conventional GUI programming philosophy, requiring developers to
manually select widgets from a widget library and associate them with the arguments and
returns of an underlying function, commonly referred to as the “callback function.”

This approach has several drawbacks. First, it is manual and repetitive. A developer needs
to manually create widgets, align them with the signature of the callback function, and
maintain the alignment manually should any of the two changes. Second, the choice of
widgets is limited to those provided by a specific GUI library, as expanding the widget library
requires significant knowledge and effort that the target users are unlikely to possess.
Third, these solutions do not leverage the features of the Python language itself to automate
or streamline the process. For example, most existing solutions require developers to man-
ually specify the labels of widgets, even though such information is often already available
in the Parameters or Args sections of a function’s Docstrings, which are common in Python
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# hello.py
def hello(your_name: str) -> str:
    return f"Hello, {your_name}."

Program 1.  A hello, world! example in Funix. It is an ordinary Python function with nothing special to
Funix. The corresponding GUI app is shown in Figure 1.

Figure 1.  The app generated from Program 1 by the command funix hello.py via Funix. Funix can be
installed as simple as pip install funix.

development. As a result, scientific developers, such as geophysicists, neurobiologists, or
machine learning engineers, whose jobs are not building apps, are not able to quickly fire
up apps to present their models, algorithms, or discoveries to the world.

To address these drawbacks, Funix was created to automatically launch apps from existing
Python functions. We observed that the choice of a widget is correlated with the type of the
function’s input/output that it is associated with. For example, a checkbox is only suitable for
Boolean types. Funix automatically selects widgets based on the types of the function’s argu-
ments and returns. In the default theme of Funix, Python native types such as str, bool, and
Literal are mapped to an input box, a checkbox, and a set of radio buttons in the MUI library,
respectively. Common scientific types like pandas.DataFrame and matplotlib.figure.Figure are
mapped to tables (MUI’s DataGrid) and charts (in mpld3). A variable’s type can be specified
via type-hinting, which is a common practice in Python development, or inferred, which
Funix plans to support in the future.

Unlike many of its peers, Funix does not have its own widget library. Any React component
can be bound to a Python type. A type-to-widget mapping can be redefined or created [on-
the-fly](#Supporting a new type on the fly using the new funix type decorator) or via a
reusable [theme](#Defining and using themes). Additionally, the properties (i.e., props) of
the frontend widget can be configured in Python via JSON. In this sense, Python becomes
a surface language for web development. The frontend development world, dominated by

# hello.py
import typing # Python native
import ipywidgets  # popular UI library

def input_widgets_basic(
    prompt: str = "Who is Oppenheimer?",
    advanced_features: bool = True,
    model: typing.Literal['GPT-3.5', 'GPT-4.0', 'Falcon-7B'] = 'GPT-4.0',
    max_token: range(100, 200, 20) = 140,
    openai_key: ipywidgets.Password = "1234556",
    )  -> str:
    pass

Program 2.  An advanced input widgets example in Funix. The input panel of the corresponding GUI
app is shown in Figure 2. In this example, Funix not only uses Python native types but also types from
ipywidgets, a popular UI library in Jupyter.
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Figure 2.  The input panel of the app generated from Program 2 by Funix, showing a variety of input
widgets.

JavaScript/TypeScript, is now accessible to Python developers who previously couldn’t tap
into it.

The centralized management of appearances using themes is an advantage of Funix over
many of its peers. A theme allows for the automatic launching of apps and ensures consis-
tent GUI appearances across different apps. To change the appearance of an app, simply
select a different theme. For further customization, a theme can be extended using the
popular JSON format. Often, a Funix developer can leverage themes developed by others to
support new types or widgets, similar to how most scientists use LaTeX classes or macros
created by others to properly typeset their papers.

More than a GUI generator, Funix is a transcompiler – a program that translates source
code from one language to another – which generates both the backend and frontend of an
application. Funix wraps the Python function into a Flask app for the backend and generates
React code for the frontend. The two ends communicate via WebSocket.

In addition to types, Funix leverages other features of the Python language and ecosystem
to further automate app building. Docstrings, commonly used in Python, are utilized by
Funix to control the UI appearance. For example, the annotation of an argument in the
Args (Google-style) or Parameters (Numpy-style) section of a docstring is used as the label or
tooltip to explain the argument to the app user. Funix also assigns new meanings to certain
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keywords and types in Python within the context of app building. For instance, global is used
for states and sessions, yield for streaming, and each class becomes a multi-page app where
pages share data via the self variable. These concepts are detailed in Section Section 5.

In summary, Funix has the following cool features for effortless app building in Python:

1. Automatic, type-based GUI generation controlled by themes
2. Exposing any React component to Python developers
3. Leveraging Python’s native features to make app building more intuitive, minimizing

the need to learn new concepts specific to Funix.

2. Motivation: the demand to rapidly launch low-interactivity
and plain-looking apps at scale
When it comes to GUI app development, there is a trade-off between simplicity and versa-
tility. JavaScript/TypeScript-based web frontend frameworks like React, Angular, and Vue.js
offer great versatility. However, their versatility is often beyond the reach of most scientists
and engineers, except for frontend or full-stack developers, and is usually overkill for most
scientific and engineering applications.

As machine learning researchers, we have observed that a significant number of scientific
applications share two common features:

1. The underlying logic is a straightforward input-output process – thus complex inter-
activity, such as dynamically updating an input widget based on user input in another
input widget, is not needed.

2. The app itself is not the end goal but a means to it – thus it is not worthy to spend time
on building the app.

Existing Python-based solutions such as Streamlit or Gradio do a great job addressing the
first feature but are still too complicated for the second one, requiring developers to read
their documentation and add code before an app can be launched. In particular, a developer
needs to manually select and configure widgets and/or link them to the arguments and
returns of a function. This low-level process is laborious. Since versatility is already sacri-
ficed for simplicity in Python-based app building, why not trade it further for even more
simplicity?

Funix pushes simplicity to the extreme. In the Program 1 example above, an app is launched
without requiring any learning or code modification. To achieve this simplicity, Funix
leverages common Python development practices, such as type hints (or type inference) and
docstrings, to save developers from extra work or learning. Funix does not aim to become a
Domain Specific Language (DSL), because it treats the Python programming language itself
(including the typing hint syntax and docstring styles) as a surface language for GUI app
building.

Because Funix is designed for quickly firing up apps that model straightforward input-
output processes, a Funix-generated app consists of two panels: the arguments of the
underlying function on the left, input panel and the Section 5.3 on the right, output panel
(Program 1 and Figure 1). A more complex process can be decomposed into simple input-
output processes and embodied into Section 5.5. The underlying or callback function will
be called after the user plugs in the arguments and click the “Run” button. The result will
be displayed in the output panel.

We would also like to argue that the rise of Generative AI (GenAI) is simplifying GUIs, as
natural languages are becoming a prominent interface between humans and computers.
For example, a text-to-image generation app (Figure 3) only needs a string input and an
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import openai  # pip install openai
import IPython

def dalle(Prompt: str = "a flying cat on a jet plane")
            -> IPython.display.Image:
    client = openai.OpenAI() # defaults to os.environ.get("OPENAI_API_KEY")
    response = client.images.generate(Prompt)
    return response.data[0].url

Program 3.  Source code for the Dall-E app in Funix. The corresponding GUI app is shown in Figure 3.

Figure 3.  A Dall-E app generated by Funix by simply wrapping OpenAI’s image generation API with a
str-to-Image function. Source code in Program 3.

image output. In this sense, Funix and its Python-based peers will be able to meet many
needs, both in scientific computing and more general applications, in the future.

3. Funix’s default mapping from Python types to React compo-
nents
Like CSS, Funix controls the GUI appearance based on the types. Under the hood, Funix
transcompiles the signature of a function into React code. Currently, Funix depends on the
type hint for every argument or return of a function. In the future, it will support type
inference or tracing.

The default mapping from basic Python types to React components is given in Table  1.
In particular, we leverage the semantics of Literal and List[Literal] for single-choice
and multiple-choice selections. Two apps exhibiting the diversity of widgets are shown in
Figure 2 and Figure 9.

Because Funix is a transcompiler, it leverages multimedia types already defined in
popular Python libraries such as ipywidgets (Jupyter’s input widgets), IPython (Jupyter’s
display system), pandas, and matplotlib. ipywidgets and IPython types are mapped to MUI
components rather than their respective components for being React compatible. Figure 4
illustrates a data-plot-from-tabular-data app that maps a pandas.DataFrame to a table and a
matplotlib.figure.Figure to a chart.
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Table 1.  Default mapping from basic Python types to components.

Python type As an input (argument) or output (return) Widget

str Input MUI TextField

bool Input MUI Checkbox or Switch

int Input MUI TextField

float Input MUI TextField or Slider

Literal Input MUI RadioGroup if number of elements is below 8; Select otherwise

range Input MUI Slider

List[Literal] Input An array of MUI Checkboxes if the number of elements is below 8;
AutoComplete otherwise

str Output Plain text

bool Output Plain text

int Output Plain text

float Output Plain text

Table 2.  Default mapping from common multimedia/MIME types to components.

Python type As an input (argument) or output (re�
turn)

Widget

ipywidgets.Password Input MUI TextField with type="password"

ipywidgets.Image Input React Dropzone combine with MUI Compo-
nents

ipywidgets.Video Input React Dropzone combine with MUI Compo-
nents

ipywidgets.Audio Input React Dropzone combine with MUI Compo-
nents

ipywidgets.FileUpload Input React Dropzone combine with MUI Compo-
nents

IPython.display.HTML Output Raw HTML

IPython.display.Markdown Output React Markdown

IPython.display.JavaScript Output Raw JavaScript

IPython.display.Image Output MUI CardMedia with component=img

IPython.display.Video Output MUI CardMedia with component=video

IPython.display.Audio Output MUI CardMedia with component=audio

matplotlib.figure.Figure Output mpld3

pandas.DataFrame & pandera.typing.DataFrame Input & Output MUI DataGrid

4. Customizing the type-to-widget mapping

Note
Introducing a new type-to-widget mapping or modifying an existing one should not be
the job of most Funix users but advanced users or user interface specialists. This is like
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import pandas, matplotlib.pyplot
from numpy import arange, log
from numpy.random import random

def table_and_plot(
   df: pandas.DataFrame = pandas.DataFrame({
       "a": arange(500) + random(500)/5,
       "b": random(500)-0.5 + log(arange(500)+1),
       "c": log(arange(500)+1) })
   ) -> matplotlib.figure.Figure:

   fig = matplotlib.pyplot.figure()
   matplotlib.pyplot.plot(df["a"], df["b"], 'b')
   matplotlib.pyplot.plot(df["a"], df["c"], 'r')

   return fig

Program 4.  A Python functions with a pandas.DataFrame input and a matplotlib.figure.Figure output. The
corresponding GUI app is shown in Figure 4. The default values populate the table with random numbers.

Figure 4.  A data-plot-from-tablular-data app generated from Program 4 by Funix. The input panel con-
tains a table (pandas.DataFrame) and the output panel contains a chart (matplotlib.figure.Figure). Both the
table and the chart are interactive/editable. As far as we know, no other Python-based solutions supports
editable tables as inputs.

most scientists who write papers in LaTeX do not develop the LaTeX classes or macros
but just use them.

The default mapping from Python types to React components is detailed in the section
above. To expand or modify an existing mapping, Funix provides two approaches: the on-
the-fly, Section 4.1 and the reusable, Section 4.2.

As a transcompiler that generates React code, Funix does not have its own widget library.
Instead, developers can choose any React component on the market (as for now, only some
MUI components are supported.) to use as the widget for a Python type. Additionally, Funix
allows configuring the properties (props) of the frontend widget in Python via JSON. In this
way, Funix bridges the Python world with the frontend world, making Python or JSON the
surface language for React-based frontend development.

4.1. Supporting a new type on the fly using the new_funix_type decorator

Program 5 defines a new type blackout, which a special case (as indicated by the inheritance)
of str and binds it with a widget. Following the convention in the frontend world, Funix
identifies a widget by its module specifier in npm, the de facto package manager in the
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from funix import new_funix_type
@new_funix_type(
  widget = {
      "widget": "@mui/material/TextField",
      "props": {
          "type": "password",
          "placeholder": "Enter a secret here."
      }
  }
)
class blackout(str):
   def print(self):
       return self + " is the message."

def hoho(x: blackout = "Funix Rocks!") -> str:
   return x.print()

Program 5.  An example of introducing a new type, binding it to a widget, and using it.

frontend world. In Program 5, the widget is identified as @mui/material/TextField. Properties
of the widget supported by its library for configuration can be modified in the new_funix_type
decorator as well. As mentioned earlier, this allows a Pythonista to tap into a React compo-
nent without frontend development knowledge.

The on-the-fly approach is only applicable when introducing a new type, e.g., a custom class.
To modify the widget choice for an existing type, a theme must be used.

4.2. Defining and using themes

A type-to-widget mapping can be reused and centralized managed via a theme, which is a
simple JSON file. An example is given in Program 6 below where the Python’s native types
str, int, and float are bound to three widgets. In this exmaple, besides using npm module
specifier, Funix shorthand strings inputbox and slider are also used.

There are two ways to apply a theme: script-wide and function-wide. The script-wide
approach (Program 7) applies a default theme to all functions in a script. The function-wide
approach (Program 8) applies a theme to a specific function. In either case, the theme can
be referred to by a web URL, a local file path, or a name/alias. If no theme is specified, Funix
uses its default theme.

To refer to a theme by its name or alias, it must be imported. The alias can be set when
importing. A theme can be imported from a web URL, a local file path, or a JSON dictionary
defining a theme (Program 9).

{
 "name": "grandma's secret theme", // space and punctuation allowed
 "widgets": {
   "str": "inputbox",        // Funix' shorthand, non-parametric
   "int": "slider[0,100,2]", // Funix' shorthand, parametric
   "float": {
       "widget": "@mui/material/Slider",
       // using MUI's widget
       // https://mui.com/material-ui/api/slider
       "props": {
           // config props of the frontend widget
           "min": 0,
           "max": 100,
           "step": 0.1
       }
   }
 }
}

Program 6.  An example theme.
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import funix

funix.set_default_theme("http://example.com/sunset_v2.json") # from web URL

funix.set_default_theme("../../sunset_v2.json") # from local file

funix.set_default_theme("grandma's secret theme") # from a name/alias

Program 7.  Three ways to apply a theme script-wide.

import funix

@funix.funix(theme = "http://example.com/sunset.json") # from web URL
def foo():
  pass

@funix.funix(theme = "../../themes/sunset.json") # from local file
def foo():
  pass

@funix.funix(theme = "grandma's secret theme") # from a name/alias
def foo():
  pass

Program 8.  Three ways to apply a theme function-wide.

5. Building apps Pythonically
Funix leverages the language features of Python and common practices in Python devel-
opment to make app building in Python more intuitive and efficient.

5.1. Default values as placeholders

Python supports default values for keyword arguments. Funix directly uses them as the
placeholder values for corresponding widgets. For example, default values in Program 2
are prefilled in Figure 2. A more complex example is the pandas.DataFrame initated with numpy
columns in Program 4 are prefilled into the table in Figure 4. In contrast, Funix’ peer solu-
tions require developers to provide the placeholder values the second time in the widget
initiation.

funix.import_theme(
  "http://example.com/my_themes.json",  # from web URL
  alias = "my_favorite_theme"           # alias is optional
)

funix.import_theme(
  "../../themes/my_themes.json",        # from local file
  alias = "my_favorite_theme"           # alias is optional
)

theme_json = { # a Funix theme definition
  "name": "grandma's secret theme"
  "widgets" : {
    "range" : "inputbox"
  }
}

funix.import_theme(
    theme_json,                        # from a JSON theme definition
    alias = "granny's secret theme"    # alias is optional
)

Program 9.  Three ways to import a theme. Note that theme importing is optional. The only benefit is to
refer to a theme by its name or alias for easy switching.
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def foo(x: str, y: int) -> str:
    """## What happens when you multiply a string with an integer?

    Try it out below.

    Parameters
    ----------
    x : str
        A string that you want to repeat.
    y : int
        How many times you want to repeat.

    Examples
    ----------
    >>> foo("hello ", 3)
    "hello hello hello "
    """
    return x * y

Program 10.  An example of a function with a Google-style docstring. The corresponding GUI app is
shown in Figure 5.

5.2. Making use of docstrings

Docstrings are widely used in the Python community. Information in docstrings is often
needed in the GUI of an app. For example, the annotation of each argument can be displayed
as a label or tooltip to explain the meaning of the argument to the app user. Therefore, Funix
automatically incorporates selected information from docstrings into apps, eliminating the
need for developers to manually add it, as required by other solutions.

Different sections of docstrings will be transformed into various types of information on
the frontend. The docstring above the first headed section (e.g., Parameters in Program 10)
will be rendered as Markdown. Argument annotations in the Args section will become
labels in the UI. The Examples section will provide prefilled example values for users to try
out. Funix currently supports only Google-style and Numpy-style docstrings. Supports for
sections beyond Args/Parameters and Examples and styles will be added in the future.

5.3. Output layout in print and return

In Funix, by default, the return value of a function becomes the content of the output
panel. A user can control the layout of the output panel by returning strings, including f-
strings, in Markdown and HTML syntaxes. Markdown and HTML strings must be explicitly
specified as IPython.display.Markdown and IPython.display.HTML, respectively. Otherwise, the

Figure 5.  An app with input panel customized by Docstrings.
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from IPython.display import Markdown, HTML
from typing import Tuple
from funix import funix

@funix(print_to_web=True)
def foo(income: int = 200000, tax_rate: float= 0.45) -> Tuple[Markdown, HTML]:
    print (f"## Here is your tax breakdown: \n")

    tax_table = (
        " | Item | $$$ | \n"
        " | --- | --- |  \n"
        f"| Income | {income} | \n"
        f"| Tax | -{tax_rate * income : .3f} | \n"
        f"| Net Income | {income - tax_rate * income : .3f} | \n\n"
    )

    return tax_table, "If you have any question, contact <a href='http://irs.gov'>IRS</a>."

Program 11.  Use print and return to control the output layout. The corresponding GUI app is shown in
Figure 6.

raw strings will be displayed. Since Python supports multiple return values, you can mix
Markdown and HTML strings in the return statement.

Quite often, we need to print out some information before a function reaches its return
statement. The print function, a built-in feature of Python, is frequently used for this pur-
pose. Funix extends this convenience by redirecting the output of print to the output panel
of an app. Printout strings in Markdown or HTML syntax will be automatically rendered
after syntax detection. To avoid conflicting with the default behavior of printing to stdout,
printing to the web needs to be explicitly enabled using a Boolean decorator parameter
print_to_web (See Program 11).

5.4. Streaming based on yield

In the GenAI era, streaming is a common method for returning lengthy text output from an
AI model. Instead of inventing a new mechanism to support streaming, Funix repurposes
the yield keyword in Python to stream a function’s output. The rationale is that return and
yield are highly similar, and return is already used to display the final output in a Funix-
powered app.

Figure 6.  An app with output panel customized by print and return. Source code in Program 11.
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import time

def stream() -> str:
    """
    ## Streaming demo in Funix

    To see it, simply click the "Run" button.
    """
    message = "We the People of the United States, in Order to form a more perfect Union, establish
Justice, insure domestic Tranquility, provide for the common defence, promote the general Welfare, and
secure the Blessings of Liberty to ourselves and our Posterity, do ordain and establish this Constitution
for the United States of America. "

    for i in range(len(message)):
        time.sleep(0.01)
        yield message[0:i]

Program 12.  Python keyword yield is repurposed for streaming in Funix. The corresponding GUI app is
shown in Figure 7.

Figure 7.  The streaming demo in Funix. Source code in Program 12.

5.5. States, sessions, and multi-page apps

5.5.1. A simple approach by using global:

In Funix, maintaining states is as simple as updating a global variable. By leveraging the
semantics of global variables which are a native feature of the Python language, Funix saves
developers the burden of learning something new in Funix.

A security risk is that there is only one backend server for the Funix app and consequently
a global variable is accessible by all browser sessions of the app. To eliminate this risk,
Funix provides a simple command-line flag -t at the launch of the Funix app to sessionize

from IPython.display import Markdown

secret_word = "funix"
used_letters = [] # a global variable to maintain the state/session

def guess_letter(Enter_a_letter: str) -> Markdown:
    letter = Enter_a_letter # rename
    global used_letters # state/session as global
    used_letters.append(letter)
    answer = "".join([
        (letter if letter in used_letters else "_")
            for letter in secret_word
        ])
    return f"### Hangman \n `{answer}` \n\n ---- \n ### Used letters \n {', '.join(used_letters)}"

Program 13.  A simple Hangman game in Funix that uses the global keyword to maintain the state. This
solution is much shorter than using peer solutions, such as in Gradio.
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all global variables. If the developer on purpose wants to share the data among different
connections, the -t flag can be omitted.

5.5.2. Multi-page apps from classes:

A special but useful case that requires maintaining states is multi-page apps. A multi-page
app consists of multiple pages or tabs that share the same variable space. Values of variables
set on one page can be accessed on another page.

Without reinventing the wheel, Funix supports this need by turning a Python class into a
multi-page app. Each member function of the class becomes a page of the multi-page app,
and pages can exchange data via the self variable. Specifically, the constructor (__init__)
becomes the landing page of the multi-page app. Since each instance of the class is inde-
pendent, the multi-page app is automatically sessionized for different connections from
browsers without needing to set the -t flag.

Program 14 is a Python class of three member methods, which are turned into three pages
of the GUI app by Funix (Figure 8). The GIF shows that values of self.a set in either the
contructor or updated in the set method can be accessed in the get method. In this approach,
a Funix developer does not need to learn anything new and can easily build a mulit-page
app from the OOP principles they are already familiar with.

from funix import funix_method
from IPython.display import Markdown, HTML

class A:
    @funix_method(print_to_web=True)
    def __init__(self, a: int):
        self.a = a
        print(f"`self.a` has been initialized to {self.a}")

    def set(self, b: int) -> Markdown:
        """Update the value for `self.a`. """
        old_a  = self.a
        self.a = b
        return (
                "| var | value |\n"
                "| ----| ------|\n"
            f"| `a` before | {old_a} |\n"
            f"| `a` after | {self.a} |"
            )

    def get(self) -> HTML:
        """Check the value of `self.a`. """
        return f"The value of <code>self.a</code> is <i>{self.a}</i>. "

Program 14.  A simple multi-page app in Funix leveraging OOP. The corresponding GUI app is shown in
Figure 8.

Figure 8.  A multiplage app generated by Funix from a class of three member methods including the
constructor. Source code in Program 14

July 10, 2024 186



Funix - The laziest way to build GUI apps in Python  | Bao et al., 2024

from funix import funix
from typing import Literal, List

@funix(
    widgets={
        "animal": "inputbox",
        "activities": "inputbox",
    }
)
def sentence_builder(
    count: range(2, 21) = 4,
    animal: Literal["cat", "dog", "bird"] = "cat",
    countries: List[Literal["USA", "Japan", "Pakistan"]] = ["USA", "Pakistan"],
    location: Literal["park", "zoo", "road"] = "park",
    activities: List[Literal["ran", "swam", "ate", "slept"]] = ["swam", "slept"],
    in_morning: bool = False
) -> str:
    return f"""The {count} {animal}s from {" and ".join(countries)} went to the {location} where they
{" and ".join(activities)} until the {"morning" if in_morning else "night"}"""

Program 15.  The Funix implementation of a sentence builder. The funix decorator overwrites the theme-
based widgets choices of two arguments.

6. The Funix decorators
Although Funix relies on the Python language (including type hints and docstrings) to define
GUI apps, there are still some aspects of an app’s appearance and behavior that remain
uncovered. This is where the @funix decorator comes into play. One example, as mentioned
above (Section 5.3), is redirecting the print output from stdout to the output panel of an app.
Here, we provide a few more examples. For full details on Funix decorators, please refer to
the Funix reference manual.

6.1. Overriding the type-based widget choice

Funix uses types to determine the widgets. However, there may be needs to manually pick
a widget. The @funix dectorator has a widgets parameter for this purpose.

Program  15 is an example to temporarily override the widget choice for two variables
of the types Literal and List[Literal] respectively. The corresponding app (Figure 9) is a
sentence builder. The Funix-based code is much shorter and more human-readable than its
Gradio-based counterpart, thanks to leveraging the Python-native features like automatic
rendering the return strings or default values.

6.2. Automatic re-run triggered by input changes

As mentioned earlier, Funix is suitable for straightforward input-output processes. Such a
process is triggered once when the “Run” button is clicked. This may work for many cases
but in many other cases, we may want the output to be updated following the changes in
the input end automatically. To do so, simply toggle on the autorun parameter in the @funix
decorator. This will activate the “continuously run” checkbox on the input panel.

6.3. Conditional visibility

Although interactivity is not a strong suit of Funix for reasons aforementioned, Funix still
supports some common interactivity features. One of them is “conditional visibility” which
reveal some widgets only when certain conditions are met (Program 17 and Figure 11).
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Figure 9.  The sentence builder app in Funix. Source code in Program 15. Gradio-based version here.

6.4. Rate limiting

import matplotlib.pyplot, matplotlib.figure
from ipywidgets import FloatRangeSlider
import numpy
from funix import funix

@funix(autorun=True)
def sine(omega: FloatRangeSlider[0, 4, 0.1]) -> matplotlib.figure.Figure:
    fig = matplotlib.pyplot.figure()
    x = numpy.linspace(0, 20, 200)
    y = numpy.sin(x * omega)
    matplotlib.pyplot.plot(x, y, linewidth=5)
    return fig

Program 16.  A sine wave plotter that re-visualizes the function whenever input changes, kept on using
the autorun parameter in @funix decorator. The corresponding GUI app is shown in Figure 10.

Figure 10.  A sine wave generator with the autorun parameter toggled on. Source code in Program 16.
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import typing
import openai
import funix

@funix.funix(
  conditional_visible=[
    {
      "when": {"show_advanced": True,},
      "show": ["max_tokens", "model", "openai_key"]
    }
  ]
)
def ChatGPT_advanced(
  prompt: str,
  show_advanced: bool = False,
  model : typing.Literal['gpt-3.5-turbo', 'gpt-3.5-turbo-0301']= 'gpt-3.5-turbo',
  max_tokens: range(100, 200, 20)=140,
  openai_key: str = ""
) -> str:
  completion = openai.ChatCompletion.create(
    messages=[{"role": "user", "content": prompt}],
    model=model,
    max_tokens=max_tokens,
  )
  return completion["choices"][0]["message"]["content"]

Program 17.  Conditional visibility in @funix decorator. App in action is shown in Figure 11.

Figure 11.  An advanced ChatGPT app that only displays advanced options when the show_advanced
checkbox is checked. Source code in Program 17.
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from funix import funix

def __compute_tax(salary: float, income_tax_rate: float) -> int:
    return salary * income_tax_rate

@funix(
  reactive={"tax": __compute_tax}
)
def after_tax_income_calculator(
    salary: float,
    income_tax_rate: float,
    tax: float) -> str:
    return f"Your take home money is {salary - tax} dollars,\
    for a salary of {salary} dollars, \
    after a {income_tax_rate*100}% income tax."

Program 18.  A reactive app.

Figure 12.  A reactive app in Funix. Source code in Program 18.

When an app is exposed, a common concern is how to avoid abuses. Rate limiting is a
common measure to this. Funix’s @funix decorator supports rate limiting based on both
browser sessions and time.

6.5. Reactive apps

Funix can dynamically prefill widgets based on information from other widgets. We call this
“reactive.” An example is given in Program 18. The tax argument of the function is populated
automatically based on the values of salary and income_tax_rate as the user enters.

6.6. Showing source code

Lastly, togging on show_source parameter in @funix can enable the source code of your app
to be displayed.

7. Jupyter support
Jupyter is a popular tool for Python development. Funix supports turning a Python function/
class defined in a Jupyter cell into an app inside Jupyter. To do so, simply add the @funix
decorator to the function/class definition and run the cell (Figure 13).

8. Showcases
Lastly, please allow us to use some examples to demonstrate the convenient and power of
Funix in quickly prototyping apps. If there is any frontend knowledge needed, it is only
HTML.

8.1. Wordle

The source code can be found here. In Funix, only simple HTML code that changes the
background colors of tiles of letters according to the rules of the game Wordle is needed. A
GIF showing the game in action is in Figure 14.
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Figure 13.  Funix working in Jupyter.

8.2. ChatGPT multi-turn

Funix does not have a chat widget, because it is so easy (less than 10 lines in Program 19)
to build one using simple alignment controls in HTML. The only thing Funix-specific in the
code is using the @funix decorator to change the arrangement of the input and output panels
from the default left-right to top-down for a more natural chat experience.

Figure 14.  The Wordle game implemented in Funix. Source code here.
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import IPython
from openai import OpenAI
import funix

client = OpenAI()

messages  = []  # list of dicts, dict keys: role, content, system. Maintain the conversation history.

def __print_messages_html(messages):
    printout = ""
    for message in messages:
        if message["role"] == "user":
            align, left, name = "left", "0%", "You"
        elif message["role"] == "assistant":
            align, left, name = "right", "30%", "ChatGPT"
        printout += f'<div style="position: relative; left: {left}; width: 70%"><b>{name}</b>:
{message["content"]}</div>'
    return printout

@funix.funix(
    direction="column-reverse",
)
def ChatGPT_multi_turn(current_message: str)  -> IPython.display.HTML:
    current_message = current_message.strip()
    messages.append({"role": "user", "content": current_message})
    completion = client.chat.completions.create(messages=messages)
    chatgpt_response = completion.choices[0].message.content
    messages.append({"role": "assistant", "content": chatgpt_response})

    return __print_messages_html(messages)

Program 19.  Multiturn chatbot using Funix.

8.3. Multimodal inputs

Funix extends the support to ipywidgets.{Image, Audio, File, Video} to allow drag-and-drop
of multimedia files or push-to-capture audio or video from the computer’s microphone or
webcam.

8.4. Vector stripping in bioinformatics

A vector is a nucleotide sequence that is appended to a nucleotide sequence of interest for
easy handling or quality control. It is added before the sequencing process and should be
removed after the sequence is read. Vector stripping is the process of removing vectors. A
vector stripping app only involves simple data structures, such as strings, lists of strings,
and numeric parameters. This is a sweet spot of Funix.

Because the bioinformatics part of vector stripping is lengthy, we only show the interface
function in Program 21 and the full source code can be found here. pandas.DataFrame’s are
used in both the input and output of this app, allowing biologists to batch process vector
stripping by copy-and-pasting their data to Excel or Google Sheets, or uploading/download-
ing CSV files.

9. Conclusion
In this paper, we introduce the philosophy and features of Funix. Funix is motivated by
the observations in scientific computing that many apps are straightforward input-output
processes and the apps are meant to be disposable at a large volume. Therefore, Funix’
goal is to enable developers, who are experts in their scientific domains but not in frontend
development, to build apps by continue doing what they are doing, without code modifica-
tion or learning anything new. To get this goal, Funix leverages the language features of the
Python language, including docstrings and keywords, to automatically generate the GUIs
for apps and control the behaviors of the app. Funix tries to minimize reinventing the wheel
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Figure 15.  A multi-turn chatbot in Funix in action. Source code in Program 19.

by being a transcompiler between the Python word and the React world. Not only does it
expose developers to the limitless resources in the frontend world, but it also minimizes
the learning curve. Funix is still a very early-stage project. As an open-source project, we
welcome feedback and contributions from the community.
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import openai
import base64
from ipywidgets import Image

client = openai.OpenAI()

def image_reader(image: Image) -> str:
"""
# What's in the image?

Drag and drop an image and see what GPT-4o will say about it.
"""

# Based on https://platform.openai.com/docs/guides/vision
# with only one line of change
response = client.chat.completions.create(
  model="gpt-4o",
  messages=[
    {
      "role": "user",
      "content": [
          {"type": "text", "text": "What's in this image?"},
          {"type": "image_url",
          "image_url": {
            "url":f"data:image/png;base64,{base64.b64encode(image).decode()}",
          },
          },
        ],
    }
  ],
)
return response.choices[0].message.content

Program 20.  A multimodal input demo in Funix built by simply wrapping OpenAI’s GPT-4o demo code
into a function with an ipywidgets.Image input and a str output. The corresponding GUI app is shown in
Figure 16.

Figure 16.  Funix maps a ipywidgets.{Image, Audio, Video, File}-type arguments to a drag-and-drop file
uploader with push-to-capture ability from the microphone or webcam of the computer. The corresponding
source code is in Program 20.
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def remove_3_prime_adapter(
    adapter_3_prime: str="TCGTATGCCGTCTTCTGCTT",
    minimal_match_length: int = 8,
    sRNAs: pandas.DataFrame = pandas.DataFrame(
        {
            "sRNAs": [
                "AAGCTCAGGAGGGATAGCGCCTCGTATGCCGTCTTCTGC",  # shorter than full 3' adapter
                "AAGCTCAGGAGGGATAGCGCCTCGTATGCCGTCTTCTGCTT",  # full 3' adapter
                # additional seq after 3' adapter,
                "AAGCTCAGGAGGGATAGCGCCTCGTATGCCGTCTTCTGCTTCTGAATTAATT",
                "AAGCTCAGGAGGGATAGCGCCTCGTATG",  # <8 nt io 3' adapter
                "AAGCTCAGGAGGGATAGCGCCGTATG",  # no match at all
            ]
        }
    ),
    # ) -> pandera.typing.DataFrame[OutputSchema]:
) -> pandas.DataFrame:

    ## THE BODY HIDDEN

    return pandas.DataFrame(
        {"original sRNA": sRNAs["sRNAs"], "adapter removed": list(return_seqs)}
    )

Program 21.  The function that is turned into a vector stripping app by Funix.

July 10, 2024 195



Open Access  | https://doi.org/10.25080/NVYF1037

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Ecological and Spatial Influences on the
Genetics of Cumacea (Crustacea: Peracarida)
in the Northern North Atlantic
Justin Gagnon ¹ , and Nadia Tahiri ²

¹ Department of Biology, University of Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Quebec, J1K
2R1 Canada, ² Department of Computer Science, University of Sherbrooke, 2500, boul. de l'Université,
Sherbrooke, Quebec, J1K 2R1 Canada

Published Jul 10, 2024

Correspondence to
Justin Gagnon
Justin.Gagnon2@USherbrooke.ca

Open Access

Copyright © 2024 Gagnon &
Tahiri. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

The peracarid taxon Cumacea is an essential indicator of benthic quality in marine ecosys-
tems. This study investigated the influence of environmental (i.e., biological or ecosystemic),
climatic (i.e., meteorological or atmospheric), and spatial (i.e., geographic or regional) vari-
ables on their genetic variability and adaptability in the Northern North Atlantic, focusing on
Icelandic waters. We analyzed partial sequences of the 16S rRNA mitochondrial gene from
62 Cumacea specimens. Using the aPhyloGeo software, we compared these sequences with
relevant variables such as latitude (decimal degree) at the end of sampling, wind speed (m/
s) at the start of sampling, O₂ concentration (mg/L), and depth (m) at the start of sampling.

Our analyses revealed variability in spatial and biological variables, reflecting the diversity of
ecological requirements and benthic habitats. The most common Cumacea families, Diastyl-
idae and Leuconidae, suggest adaptations to various marine environments. Phylogeographic
analysis showed a divergence between specific genetic sequences and two habitat variables:
wind speed (m/s) at the start of sampling and O₂ concentration (mg/L). This observation
may indicate the possibility of varying local adaptations in response to these fluctuating
conditions.

These results reinforce the importance of further research into the relationship between
Cumacea genetics and global environmental variables to interpret the evolutionary dynamics
and adaptation of these deep-sea organisms. This study sheds much-needed light on the
acclimatization of invertebrates to climate change, anthropogenic pressures, and marine
habitat management, potentially contributing to the evolution of more effective conservation
strategies and policies to protect these vulnerable ecosystems.

The aPhyloGeo Python package is freely and publicly available on GitHub and PyPi, providing
an invaluable tool for future research.

Keywords Adaptation, Atlantic, Bioinformatics, Biology, Cumacea, Iceland,
Phylogeography

1. Introduction
The North Atlantic and Subarctic regions, particularly the Icelandic waters, are of ecological
interest due to their diverse water masses and unique oceanographic features [1], [2], [3].
These areas form vital benthic habitats¹ [4] and enhance our understanding of deep-sea
ecosystems and biodiversity patterns [3], [5], [6]. The IceAGE project and its predecessors,

¹Areas at the bottom of oceans, lakes, or rivers, including sediments and organisms that live in them.
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BIOFAR and BIOICE, provide invaluable data for studying the impacts of climate change
and seabed mining, especially in the Greenland, Iceland, and Norwegian (GIN) seas [7].

Cumacea, a crustacean taxon within Peracarida, are major indicators of marine ecosystem
health due to their sensitivity to environmental fluctuations [8] and their contribution to
benthic food webs [9]. Despite their ecological importance, the evolutionary history of deep-
sea benthic invertebrates remains uncharted, notably in the North Atlantic [10]. Analyzing
the genetic and distribution patterns of these deep-sea organisms is crucial for predicting
their responses to climate change [10] and anthropogenic pressures [7], while also advanc-
ing our understanding of their adaptive mechanisms within deep-sea ecosystems.

Given the urgency of the aforementioned factors, this study aims to analyze the effects of
ecological (climatic and environmental) and spatial variables on the genetic variation and
adaptation of Cumacea in the Northern North Atlantic. More specifically, we will examine
whether there is a genetic adaptation between the genetic structure of a region represented
by a partial sequence of the 16S rRNA mitochondrial gene of the Cumacea species included
in our analyses and their habitat variables. If so, we will identify which variables show the
greatest divergence from a specific segment (i.e., window) of this partial sequence and fur-
ther investigate the potential associated protein using bioinformatics tools to interpret its
biological relevance. Our approach includes confirming various phylogeographic models²
and updating a Python package (currently in beta), aPhyloGeo, to facilitate these analyses.

This paper is organized as follows: Section 2 reviews pertinent studies on the biodiversity
and biogeography of deep-sea benthic invertebrates; Section 3 summarizes the aims and
contributions of this study, highlighting aspects relating to the conservation and adaptation
of marine invertebrates to climate change; Section  4 describes data collection, prepro-
cessing and phylogeographic analyses of partial genetic sequence and habitat variables;
Section 4.7 describes the metrics used to evaluate the phylogeographic models; Section 5
presents the results; finally, Section 6 discusses their implications for future research and
conservation efforts.

2. Related Works
Assessing and quantifying the biodiversity of deep-sea benthic invertebrates has become
increasingly important since it was discovered that their species richness may be under-
estimated [11]. Subsequent research has highlighted the need for large-scale distribution
models to interpret the diversity of these organisms across their ecological and evolution-
ary contexts [12]. Consequently, recent efforts have focused on mapping, managing, and
studying the seabed [13]. Advanced technologies, such as acoustic detection are improving
our knowledge of benthic ecosystem complexity [13]. Integrating genetic and habitat vari-
ables provides a better insight into how ecosystemic, meteorological, and spatial variables
influence the genetic variation, distribution, biodiversity, and resilience of deep-sea benthic
organisms [14].

However, the relationship between genetics and the environment is complex, involving
gene-environment interactions and factors related to natural selection, which makes it
difficult to identify clear causal relationships [15]. Additionally, the distinction between the
direct and indirect effects of the environment on genetics presents further challenges [16],
[17]. The limitations of current methods for measuring genetic and ecological variables,
combined with logistical constraints, often limit the scope of such studies [16], [18]. This
complexity may explain why the relationship between the environment and genetics of

²Phylogeographic models are computational tools that analyze relationships between the genetic
structures of populations and their geographic distributions. In our case, by incorporating regional,
biological, and atmospheric variables, we can analyze and interpret their impact on the genetic
adaptation and spatial patterns of Cumacea species.
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Cumacea has been less studied, despite their importance for understanding how deep-sea
invertebrates adapt to fluctuating environmental conditions.

3. Our Contribution
Our study focuses on the genetic fluctuation of a partial sequence of the 16S rRNA mitochon-
drial gene in Cumacea communities in response to variations in their habitat, a topic that
has been little explored in previous studies [11], [19]. We aim to refine the natural selection
hypothesis by identifying specific divergent genetic regions and the potentially associated
proteins using bioinformatics tools, such as protein structure modeling and functional
annotation databases, to reveal the potential functions that these proteins may have in the
adaptation of Cumacea to habitat fluctuations. By linking this partial sequence to habitat
variables using robust analytical methods, such as dissimilarity calculations and phyloge-
netic reconstructions, we can better interpret the selection effects at the molecular level of
this Cumacea sequence, which could confer survival advantages in the harsh environments
of the Northern North Atlantic. This represents a major advance over previous research,
which has often struggled to integrate genetic and biological data in the context of deep-
sea invertebrates [14], [20] or has faced difficulties in linking genetics and environment
[21], [22].

Furthermore, our genetic and environmental data highlight habitats of high conservation
interest that can be considered for establishing marine protected areas [4]. These results
are essential for developing informed conservation strategies in the context of climate
change. Finally, our study paves the way for further research on other invertebrate species
across different geographic regions. By extending this research to diverse environments
and taxonomic groups, scientists will be better able to assess the adaptation and resilience
of marine invertebrates to changing conditions.

4. Materials and Methods
This section describes our data and introduces the main data preprocessing steps, the aPhy	
loGeo software, the distance metrics used, and how the figures were created. A flow chart,
constructed with the diagram software draw.io, summarizes this section (see Figure 1).

Figure 1.  Flow chart summarizing the Materials and Methods section workflow. Six different colors
highlight the blocks. The first block (blue) represents our database. The second block (in red) is data
preprocessing, which consists of deleting certain variables. The third and fourth blocks (orange) imple	
ment the aPhyloGeo software and its parameters for our phylogeographic analyses. The fifth block (gray)
applies distance metrics to the genetic and habitat variable trees produced. The sixth block (yellow)
calculates and compares distance metrics between genetic and habitat variable trees. The seventh block
(purple) identifies the most divergent habitat variables of a specific region of the partial sequence of the
16S rRNA mitochondrial gene based on the results of tree comparisons. *See YAML files on GitHub for
more details on these parameters.
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Figure 2.  Distribution map of Cumacea specimens included in our analyses according to the oceanic
sector where they were sampled. The grey area represents Iceland, and the number next to the point is
the number of specimens found at that sampling point.

4.1. Description of the data

The study area is located in the Northern part of the North Atlantic, including the Denmark
Strait, the Iceland Basin, the Irminger Basin, and the Norwegian Basin and Sea (see
Figure 2). The specimens analyzed were collected as part of the IceAGE project (Icelandic
marine Animals: Genetic and Ecology; Cruise ship M85/3 in 2011), which focused on the
deep continental slopes and abyssal waters around Iceland [7]. The sampling period for the
included specimens was from August 30 to September 22, 2011, and they were collected at
depths ranging from 315.9 m to 2567.7 m. Detailed protocols concerning the sampling plan,
sample processing, DNA extraction steps, PCR amplification, sequencing, and aligned DNA
sequences are available in [3].

4.2. Data preprocessing

We used data from the article [3], the IceAGE project, and related data from the BOLDSystem
database, as described in [3]. Given these databases’ enormous variety of variables, we ap-
plied a selective reduction procedure. Variables with no variability (categorical data) were
excluded from our study, for which all data were missing and were not linked to genetic
sequences or spatial, environmental, and climatic variables. Out of the 495 available in the
IceAGE dataset, we considered 62 specimens for which partial 16S rRNA mitochondrial gene
sequences were available.

Next, we calculated the variance (𝑆2) using the 𝑣𝑎𝑟() function in RStudio Desktop 4.3.2 for
each of the selected variables (numerical and categorical). This step aimed to eliminate
variables with low variation, as they are unlikely to provide essential data for analysis.
We set a variance threshold of ≤ 0.1 to exclude uninformative variables. The latter retains
variables whose variability is reasonably sufficient for our analyses while rejecting those
with little variation. Only water salinity was eliminated based on this criterion (𝑆2

Salinity =
0.02146629). The formula (see Equation Equation 1) and code (Program 1) used to calculate
the variance of our final variables, available in the data file on GitHub, are provided below:

𝑆2 =
∑𝑛

𝑖=1 (𝑥𝑖 − | 𝑥)2

𝑛 − 1
(1)

where 𝑆2 is the variance of the variable, 𝑥𝑖 represents each value of the variable, | 𝑥 is the
average of the values for this variable, and 𝑛 is the number of values for this variable in
the dataset.
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# Import data from the CSV file
Data <- read.csv(file="Final_Data_Article.csv", header=TRUE, sep=";")

# Define a function to calculate entropy for categorical variables
calculate_entropy <- function(x) {
  # Calculate the frequency of each category
  freq_table <- table(x)

  # Calculate probabilities
  probabilities <- freq_table / sum(freq_table)

  # Calculate entropy using the probabilities
  entropy_value <- -sum(probabilities*log(probabilities), na.rm=TRUE)

  return(entropy_value)
}

# Calculate variance
variances <- sapply(Data, function(x) {
  # Check if the column is numeric
  if (is.numeric(x)) {
    # Compute variance, excluding NA values
    var(x, na.rm=TRUE)
  } else if (is.factor(x) || is.character(x)) {
    # If the column is categorical, compute entropy
    calculate_entropy(x)
  } else {
    NA  # Return NA for other types of columns
  }
})

# Display variances/entropies
print(variances)

Program 1.  RStudio script to calculate the variance of each numerical and categorical variables in our
final dataset.

We calculated the Pearson correlation (𝑟) between variables using the 𝑐𝑜𝑟() function
in RStudio Desktop 4.3.2. Variables (numerical) exhibiting strong correlations with each
other (threshold > 0.90) were removed to avoid repetition and guarantee variable indepen-
dence. We considered the threshold of > 0.90 to be an adequate compromise between
preserving properties for our analyses and eliminating the repetition of information
in our data. Since we have three missing data for O₂ concentration (mg/L), we have
used the “pairwise.complete.obs method”. This method calculates the Pearson correlation
matrix using all accessible pairs of observations, even if some data are missing. Using
the above threshold, four variables were discarded: latitude (DD) at the start of sampling
(Lat_start_end: 𝑟 = 0.9996658), longitude (DD) at the end of sampling (Long_start_end: 𝑟 =
0.9999979), depth (m) at the end of sampling (Depth_start_end: 𝑟 = 0.9998579) and wind direc-
tion at the start of sampling (WindD_start_end: 𝑟 = 0.9752331). The decision to remove these
variables was based on their variance (𝑆2) value: 𝑆2

Lat_start = 10.03077 and 𝑆2
Lat_end = 10.71335;

𝑆2
Long_start = 30.47940 and 𝑆2

Long_end = 30.47574; 𝑆2
Depth_start = 776437.1 and 𝑆2

Depth_end = 775394.7;
𝑆2

WindD_start = 2.405077 and 𝑆2
WindD_end = 4.482285. The formula (see Equation Equation 2) and

code (Program 2) used to calculate the Pearson correlation coefficient between our final
numerical variables are shown below:

𝑟 =
∑𝑛

𝑖=1(𝑥𝑖 − | 𝑥)(𝑦𝑖 − | 𝑦)

√∑𝑛
𝑖=1 (𝑥𝑖 − | 𝑥)2 ∑𝑛

𝑖=1 (𝑦𝑖 − | 𝑦)2
(2)

where 𝑟 is the Pearson correlation coefficient between two variables, 𝑥𝑖 are the values of
the variable 𝑥, 𝑦𝑖 are the values of the variable 𝑦, | 𝑥 and | 𝑦 are respectively the averages of
the two variables, and 𝑛 is the number of values of the two variables in the dataset.

This selection of variables and data resulted in a table containing 62 rows (𝑛 = 62) and 16
columns (number of variables).

July 10, 2024 200



Ecological & Spatial Influences on the Genetics of Cumacea in N. Atlantic  | Gagnon & Tahiri, 2024

# Import data
Data <- read.csv(file="Final_Data_Article.csv", header=TRUE, sep=";")

# Select numeric columns only from the dataset
numeric_Data <- Data[sapply(Data, is.numeric)]

# Calculate Pearson correlation matrix
correlation_matrix <- cor(numeric_Data, use="pairwise.complete.obs")

# Display correlation matrix
print(correlation_matrix)

Program 2.  RStudio script to calculate the Pearson correlation coefficient between all the numerical
variables in our final dataset.

4.3. Selected variables in the IceAGE database

4.3.1. Spatial data:

• The latitude at the end of sampling (see Figure 3a) and longitude at the start of sam-
pling (see Figure 3b), both in decimal degrees (DD), as they are intimately linked to the
environmental gradients and historical mechanisms modeling genetic heterogeneity
[23].

• The five oceanic sectors across the seas around Iceland (see Figure 2): the Denmark
Strait (𝑛 = 28), the Iceland Basin (𝑛 = 15), the Irminger Basin (𝑛 = 12), the Norwegian
Sea (𝑛 = 4), and the Norwegian Basin (𝑛 = 3).

4.3.2. Environmental data:

• Depth (m) at the start of sampling (see Figure 3c), as well as water temperature (°C)
(see Figure 3e), and O₂ concentration (mg/L) (see Figure 3f), as these are vital elements
of the marine ecosystem that have an impact on the distribution and evolutionary
acclimatization of marine species [24], [25].

• Since the sedimentary characteristics directly influence the distribution of Cumacea
[3], they were included in our data. They are divided into six ecological niche cate-
gories: mud (𝑛 = 30), sandy mud (𝑛 = 15), sand (𝑛 = 9), forams (𝑛 = 3), muddy sand (𝑛 =
3), and gravel (𝑛 = 2).

4.3.3. Climatic data:

Wind speed (m/s) at the start (see Figure 3d) and end of sampling and wind direction at the
end of sampling were also included, giving the contribution of wind to benthic ecosystem
dynamics and the restructuring of species distribution by wind currents and sediment
transport [26], [27], [28]. The wind direction at the end of sampling comprises eight orienta-
tions: south (S, 𝑛 = 15), southwest (SW, 𝑛 = 15), northeast (NE, 𝑛 = 9), west-southwest (WSW,
𝑛 = 7), southeast (SE, 𝑛 = 6), north-northwest (NNW, 𝑛 = 5), south-southeast (SSE, 𝑛 = 3), and
east (E, 𝑛 = 2).

4.4. Selected variables in the BOLDSystem database

4.4.1. Taxonomic data:

The family, genus, and scientific name of the Cumacea were integrated into our data
to study evolutionary relationships and genetic variation to habitat and acclimatization
variables among the specimens. These comprise seven families (see Figure 4): Diastylidae
(𝑛 = 21), Lampropidae (𝑛 = 13), Leuconidae (𝑛 = 12), Astacidae (𝑛 = 7), Bodotriidae (𝑛 = 4),
Ceratocumatidae (𝑛 = 3), and Pseudocumatidae (𝑛 = 2). A total of 20 Cumacea species were
included in our dataset (see Figure 4). We have also included the sample identity (Sampleid)
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so that each specimen remains unique. Some specimens were only identified to family (𝑛 =
1) or genus (𝑛 = 4).

4.5. Selected variables from article C. Uhlir et al. [3]

4.5.1. Other environmental data:

The habitat and water mass of the sampling points were the only environmental variables
taken directly from Table 1 of [3], as they can provide insight into how they may affect
Cumacea genetic diversity and the acclimatization of these species in the GIN seas around
Iceland. Thus, the water masses definitions, as described in [3], were used as a reference:
Arctic Polar Water (APW, 𝑛 = 15), Iceland Sea Overflow Water (ISOW, 𝑛 = 15), North Atlantic
Water (NAW, 𝑛 = 9), warm Norwegian Sea Deep Water (NSDWw, 𝑛 = 8), Arctic Polar Water/
Norwegian Sea Arctic Intermediate Water (APW/NSAIW, 𝑛 = 7), Labrador Sea Water (LSW,
𝑛 = 3), cold Norwegian Sea Deep Water (NSDWc, 𝑛 = 3), and Norwegian Sea Arctic Inter-
mediate Water (NSAIW, 𝑛 = 2) (see Figure 5). In terms of habitat, we considered the three
categories used in [3]: Deep Sea (𝑛 = 38), Shelf (𝑛 = 15), and Slope (𝑛 = 9) (see Figure 6).

4.5.2. Genetic data:

The aligned partial DNA sequence of the 16S rRNA mitochondrial gene was included, as this
region is standard in phylogeny and phylogeography studies [29] and sufficiently conserved
over time to guarantee exact alignments between different species [30]. We examined 61
of the 306 aligned DNA sequences used for phylogeographic analyses by [3]. As some speci-
mens have their DNA sequence duplicated, or even quadruplicated with a difference of one
or two nucleotides, the longest-aligned DNA sequence of each specimen was retained. The
“ICE1-Dia004” specimen is the only one whose sequence (not aligned) was taken from the
BoldSystem database, as it was absent from the [3] aligned DNA database.

4.6. aPhyloGeo software

We used the cross-platform Python software aPhyloGeo, developed by the Tahiri Lab team,
for our phylogeographic analyses. This software is designed to analyze phylogenetic trees
using ecological and spatial variables (Program 3) to interpret the evolution of species under
different environmental conditions [31], [32], [33].

This software was selected for our analysis as it is the first phylogeographic tool capable of
establishing similarity or dissimilarity between the genetics of species and environmental,
climatic, and spatial variables [31], [32], [33], which is precisely the objective of our study.
The aPhyloGeo software offers several key functionalities:

1. Phylogenetic tree evaluation: The software identifies the evolutionary relationships
among species based on their genetic sequences [31], [32], [33], which is essential for
interpreting phylogeographic models that connect species evolution to their spatial
distribution and biological and meteorological contexts.

2. Ecological and regional dissimilarity analysis: The software highlights divergence
and convergence between genetic sequences and habitat variables [31], [32], [33],
enabling the assessment of the influence of these variables on genetic fluctuations
and the evolutionary history of Cumacea species.

3. Evaluation of genetic diversity: The software quantifies genetic heterogeneity,
facilitating the identification of potential evolutionary processes (e.g., mutation, spe-
ciation, and genetic drift) and local adaptations.

The aPhyloGeo Python package is freely and publicly available on GitHub, and is also
available on PyPi, to facilitate complex phylogeographic analyses. The software process has
three main stages:
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if __name__ == "__main__":

    # Load parameters
    Params.load_from_file(Params.reference_yaml_filepath)

    # Load the sequence file
    sequence_file = utils.loadSequenceFile(
                    Params.reference_gene_filepath)

    # Create an AlignSequences object
    align_sequence = AlignSequences(sequence_file)

    # Load variable data
    variable_data = pd.read_csv(Params.file_name)

    # Perform the alignment of sequences
    alignments = align_sequence.align()

    # Generate genetic trees based on aligned sequences
    geneticTrees = utils.geneticPipeline(alignments.msa)

    # Create a GeneticTrees object
    trees = GeneticTrees(trees_dict=geneticTrees,
                        format="newick")

    # Generate variable trees
    variableTrees = utils.climaticPipeline(variable_data)

    # Filter the results based on the generated trees
    utils.filterResults(variableTrees,
                       geneticTrees,
                       variable_data)

Program 3.  Main script for tutorial using the aPhyloGeo package.

1. The first step was to collect DNA sequences from Cumacea of sufficient quality for
the needs of our results [31], [32], [33]. In this study, 62 Cumacea specimens were
selected to represent 62 partial sequences of the 16S rRNA mitochondrial gene. We
then included, from our database, two climatic variables, namely wind speed (m/s)
at the start and end of the sampling; three environmental variables, such as depth
(m) at the start of sampling, water temperature (°C), and O₂ concentration (mg/L); and
two geographic variables, latitude (DD) at the end of sampling and longitude (DD) at
the start of sampling.

2. The second step was to generate trees from genetic, biological, spatial, and meteoro-
logical data. For spatial variables, the Neighbor-Joining method³ was applied between
each pair of Cumacea from distinct spatial conditions to produce a symmetrical
square matrix and build the spatial tree from this matrix [33]. Each geographic
variable generates a distinct phylogenetic tree. If there are 𝑚 windows from the
genetic sequences, there will be 𝑚 geographic trees. The same approach was applied
to biological, meteorological, and genetic data.

For the genetic data, phylogenetic reconstruction was repeated to build genetic trees based
on 62 partial sequences of the 16S rRNA mitochondrial gene, considering only data within a
window that progresses along the alignment [31], [32], [33]. Each window in the alignment
will give a genetic tree. If there are 𝑛 windows from the sequences, there will be 𝑛 phyloge-
netic trees. This displacement can vary according to the steps and the size of the window
defined by the user (their length is determined by the number of base pairs (bp)) [31], [32],
[33].

In our case, we set up the aPhyloGeo software as follows: 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐴𝑙𝑖𝑔𝑛𝑒𝑟 for se-
quence alignment; Hamming distance to measure simple dissimilarities between sequences;
Wider Fit by elongating with Gap(starAlignment) algorithm takes alignment gaps into ac-

³It is a method used to construct phylogenetic trees using distance matrices.
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count, which is often mandatory in the case of major deletions or insertions in the
sequences; windows_size: 10 nucleotide (nt); and finally, step_size: 1 nt. The last two configu-
rations imply that for each 10 nt window, a phylogenetic tree is produced using the 10 nt
sequence of each Cumacea. Next, the window is moved by 1 nt, creating a new tree with the
next 10 nt, and so on until the end of the alignment. Genetic trees will be stored in an object
called 𝑇1, while spatial and ecological trees will be stored in another object called 𝑇2.

1. The third step is to compare the genetic trees constructed in each sliding
window with the ecosystemic, atmospheric, and regional trees using the Robinson-
Foulds distance [34], normalized Robinson-Foulds distance and Euclidean distance.
These contribute to understanding the correspondence between Cumacea genetic
sequences and their habitat variables. The approach also takes bootstrapping
into account [31], [32], [33]. The results of these metrics were obtained using
the functions 𝑟𝑜𝑏𝑖𝑛𝑠𝑜𝑛𝑓𝑜𝑢𝑙𝑑𝑠(𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2) and 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝑑𝑖𝑠𝑡(𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2) from the aPhy	
loGeo software and were organized by the main function (Program  3). Those
for the normalized Robinson-Foulds distance were obtained with the function
𝑟𝑜𝑏𝑖𝑛𝑠𝑜𝑛𝑓𝑜𝑢𝑙𝑑𝑠(𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2) (see the last line of code in Program 4). The result of the
metrics indicates which variables show the greatest genetic divergence according to
the magnitude of the metric distances (see figures Figure 7 and Figure 8).

A sliding-window approach enables the precise location of subtle sequences with high rates
of genetic divergence [31], [32], [33]. This method involves moving a fixed-size window over
the alignment of genetic sequences. This allows genetic trees to be built for each part of the
aligned sequences, depending on the size of the window and the step size. It therefore makes
it possible to recognize changes in evolutionary relationships along the partial sequence
region of the 16S rRNA mitochondrial gene of Cumacea species. This method is essential to
determine whether this region of the Cumacea genome can be affected by certain ecological
or spatial variables in their habitat (see Figure 7 and Figure 8).

4.7. Metrics

In our phylogeographic analysis, we employed three distance metrics to quantify differ-
ences between phylogenetic trees and habitat trees, as well as to evaluate dissimilarities
between genetic sequences and the associated environmental variables. This approach
allowed for a detailed examination of the evolutionary patterns of Cumacea communities
across varying ecological conditions.

The following section provides a detailed description of the three distance functions refer-
enced in the second and third steps of Section 4.6, offering a more rigorous examination of
their role in the analysis.

4.7.1. Robinson	Foulds distance:

The Robinson-Foulds (RF) distance [34] calculates the distance between genetic trees built
in each sliding window (𝑇1) and the variable trees (𝑇2) (see the list in the first step of the
Section 4.6) [35], [36]. This metric is used to evaluate the topological differences between the
two sets of trees by measuring the minimum number of elementary operations (merging
and splitting nodes) required to transform one tree (genetic) into another (variable habitat)
(see Equation Equation  3 and Program  4). A high distance of a specific window in RF
distance analysis may imply that the habitat variable has little to no impact on the evolution
of this particular DNA sequence and that the fluctuation of this variable might not explain
the genetic divergence observed.

RF(𝑇1, 𝑇2) = | Σ(𝑇1)ΔΣ(𝑇2) | (3)

where RF(𝑇1, 𝑇2) is the Robinson-Foulds distance between the two sets of trees, Σ(𝑇1) and
Σ(𝑇2) are the sets of divisions in trees 𝑇1 and 𝑇2 and Δ, the difference between these two sets.
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def robinson_foulds(tree1, tree2):

    # Initialize the Robinson-Foulds distance
    rf = 0

    # Convert trees from Newick format to ete3.Tree objects
    tree1_newick = ete3.Tree(tree1.format("newick"), format=1)
    tree2_newick = ete3.Tree(tree2.format("newick"), format=1)

    # Calculate the Robinson-Foulds distance
    rf, rf_max, common_leaves = tree1_newick.robinson_foulds(
                                tree2_newick,
                                unrooted_trees=True)

    # If there are no common leaves, set the RF distance to 0
    if len(common_leaves) == 0:
        rf = 0

    # Return the RF distance and its normalized value
    return rf, rf / rf_max

Program 4.  Python script for calculating the Robinson	Foulds Distance using the ete3 package in the
aPhyloGeo package. The Newick format represents the phylogenetic and variable trees in text form.

4.7.2. Normalized Robinson	Foulds distance:

The normalized Robinson-Foulds (nRF) distance scales the RF distance to account for the
size variations in the trees (number of clades; i.e., a group of species with a common origin),
allowing a more equitable comparison. It scales the distance to a range between 0 and 1. In
our context, the distance has been normalized by 2𝑛 − 6, where 𝑛 represents the number of
taxa (see Equation Equation 4 and the last line of code in Program 4).

Since the size of environmental trees constructed with O₂ concentration data (mg/L) differs
from that of other variables due to missing data, this nRF distance allows its dissimilarity
with genetic trees to be compared more fairly [33], [36]. It reveals the relative influence of
O₂ concentration (mg/L) on Cumacea phylogenetic relationships, independent of tree size
[33], [36]. A high distance of a specific window in the nRF distance analysis suggests that we
cannot conclude that there is a correlation between this DNA sequence and the variable. It
may indicate a topological dissimilarity between the habitat variable trees and the genetic
trees at that position in the DNA sequence alignments.

RFnorm(𝑇1, 𝑇2) = | Σ(𝑇1)ΔΣ(𝑇2) |
| Σ(𝑇1) | + | Σ(𝑇2) |

(4)

where RFnorm(𝑇1, 𝑇2) is the normalized Robinson-Foulds distance between the two sets of
trees, Σ(𝑇1) and Σ(𝑇2) are the sets of divisions in trees 𝑇1 and 𝑇2 and Δ, the difference
between these two sets.

4.7.3. Euclidean distance:

The Euclidean distance calculates the straight-line distance between two sets of points in a
multidimensional space, which designates the length divisions of the two sets of trees (𝑇1
and 𝑇2). It is used to evaluate the degree of divergence or similarity of topologies between
two respective sets of trees (see Equation Equation 5 and Program 5). A high distance of
a specific window in the Euclidean distance analysis suggests evolutionary divergences
between members of the Cumacea communities at the level of this DNA sequence and the
variation of the habitat variable (see Figure 7d and Figure 8d). In other words, the habitat
variable may not have a dominant contribution to the evolution of this specific sequence of
Cumacea communities.
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def euclidean_dist(tree1, tree2):

    # Initialize the Euclidean distance
    ed = 0

    # Create a TaxonNamespace object to handle taxon information
    tns = dendropy.TaxonNamespace()

    # Load the first tree into a dendropy Tree object
    tree1_tc = dendropy.Tree.get(data=tree1.format("newick"),
                                 schema="newick",
                                 taxon_namespace=tns)

    # Load the second tree into a dendropy Tree object
    tree2_tc = dendropy.Tree.get(data=tree2.format("newick"),
                                 schema="newick",
                                 taxon_namespace=tns)

    # Encode the bipartitions of both trees
    tree1_tc.encode_bipartitions()
    tree2_tc.encode_bipartitions()

    # Calculate the Euclidean distance
    ed = dendropy.calculate.treecompare.euclidean_distance(
                                                 tree1_tc,
                                                 tree2_tc)

    return ed

Program 5.  Python script for calculating the Euclidean distance using the ete3 and the dendropy
packages in the aPhyloGeo package. The Newick format represents the phylogenetic and variable trees in
text form.

𝑑Euclidean(𝑇1, 𝑇2) = √∑
𝑛

𝑖=1
(𝑇 1𝑖 − 𝑇2𝑖)

2 (5)

where 𝑑Euclidean(𝑇1, 𝑇2) is the Euclidean distance between the two sets of trees, and 𝑇1𝑖 and
𝑇2𝑖 represent the respective divisions of trees 𝑇1 and 𝑇2 for each 𝑖-th division.

Interestingly, Euclidean distance is more sensitive to the subtle tree topology, making it suit-
able for identifying detailed correlations between genetic fluctuations and those of habitat
variables [37]. It can therefore be used to study fine divergences between trees, enabling
nuanced identification of the effects of habitat variables on the genetic structure of species
[37]. As for the Robinson-Foulds distance (normalized or not), although widely applied in
evolutionary biology, it is less sensitive to slight topological dissimilarities, making it less
accurate for identifying fine correlations between genetics and habitat variables due to its
structural nature [38], [39].

4.8. Creating Figures

Figure  3, Figure  4, Figure  7 and Figure  8 were made with Python 3.11, while Figure  2,
Figure 5 and Figure 6 were made with RStudio Desktop 4.3.2.

5. Results
The violin diagrams shown in Figure 3 are used to display summary statistics similar to box
plots, showing medians (white lines), interquartile ranges (thickened black bars), and the
rest of the distributions (thin black lines), except the “extreme” points. Wider areas indicate
a greater probability of the variables taking a given value. They summarize the distribution
of spatial (latitude at the end of sampling and longitude at the start of sampling, both in
DD), atmospheric (wind speed (m/s) at the start of sampling), and ecosystemic (depth (m)
at the start of sampling, water temperature (°C), and O₂ concentration (mg/L)) data. These
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Table 1.  Table summarizing key statistics such as mean, median, standard deviation (Std Dev), 1st
quartile (Q1) and 3rd quartile (Q3) of biological (depth (m) at the start of sampling, water temperature
(°C), and O₂ concentration (mg/L)), spatial (latitude (DD) at the end of sampling and longitude (DD) at
the start of sampling) and atmospheric (wind speed (m/s) at the start of sampling) variables for our
phylogeographic analyses.

Attributes Statistics Mean Std Dev Q1 Me�
dian

Q3 Min Max

Lat end (DD) 64.75 3.27 61.65 67.15 67.63 60.05 67.86

Long start (DD) −23.12 5.52 −26.77 −26.21 −18.14 −31.35 −12.16

Depth start (m) 1412.57 881.16 579.10 1574.70 2504.70 315.90 2567.70

Watertemp
ground (°C)

1.45 1.73 0.07 0.71 2.65 0.85 4.28

O2 saturation
ground (mg/L)

271.88 18.11 258.39 278.77 290.90 245.53 292.97

Windspeed
start (m/s)

6.26 2.16 5.25 6.00 7.00 2.00 11.00

diagrams are essential for understanding habitat conditions and highlighting the variables
that can potentially influence genetic fluctuation and adaptability in Cumacea. In Table 1
and Figure 3, the variables are designated by their names from the IceAGE database, except
for latitude (DD) at the end of sampling and longitude (DD) at the start of sampling, for
which the term “dec” has been removed at the end to avoid confusion.

Figure 3.  Violin diagrams of two regional, one atmospheric, and three ecosystemic variables that provide
essential information about the ecological and meteorological conditions of Cumacea habitats. a) Latitude
(DD) at the end of sampling (red) suggest that the specimens come from two dominant latitudinal (DD)
regions (around 61.65 DD and 67.63 DD); b) Longitude (DD) at the start of sampling (yellow) implies that
the specimens come from two dominant longitudinal (DD) regions (around −26.77 DD and −18.14 DD); c)
Depth (m) at the start of sampling (green) suggest that the specimens were mainly collected and concen	
trated at three different depths (m) (around 500 m, 1500 m and 2500 m); d) Wind speed (m/s) at start of
sampling (light blue) indicate stable the wind conditions (m/s) at the start of sampling (around 6.00 m/s);
e) Water temperature (°C) (dark blue) suggest that the specimens were mostly collected and concentrated
at two different water temperatures (°C) (around 0.07 °C and 2.66 °C); f) O₂ concentration (mg/L) (pink)
implies that the specimens were primarily collected and concentrated at two different O₂ concentrations
(mg/L) (around 258.39 mg/L and 290.90 mg/L).
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Our results revealed variability in most habitat variables, as shown in Figure 3. For instance,
the median of the latitude at the end of sampling (67.15 DD; Table 1) is higher than the mean
(64.75 DD; Table 1), showing an asymmetric distribution skewed towards lower values. This
trend is also observed for depth (m) at the start of sampling (Median: 1574.70 m; Mean:
1412.57 m; see Figure 3c and Table 1) and O₂ concentration (mg/L) (Median: 278.77 mg/L;
Mean: 271.88 mg/L; see Figure 3f and Table 1). The bimodal shape of the latitude distribution
curve suggests that the specimens came from two dominant latitudinal regions at the end
of sampling (around 61.65 DD and 67.63 DD; see Figure 3a and Table 1). This bimodality is
also observed in longitude (DD) at the start of sampling (around −26.77 DD and −18.14 DD;
see Figure 3b and Table 1), as well as for water temperature (°C) (around 0.07 °C and 2.66
°C; see Figure 3e and Table 1), and O₂ concentration (mg/L) (around 258.39 mg/L and 290.90
mg/L; see Figure 3f and Table 1).

The median of the longitude (DD) at the start of sampling (-26.21 DD; Table 1) is lower than
the mean (-23.12 DD; Table 1), indicating asymmetry on the higher sides (see Figure 3b), as
does the water temperature (°C) (Mean: 1.45 °C; Median: 0.71 °C; see Figure 3e and Table 1).
Unlike all the other diagrams in Figure 3, the curve of the depth (m) at the start of sampling
(see Figure 3c) has a multimodal shape with three prominent peaks, suggesting that the
specimens were mainly collected and concentrated at three different depths (around 500
m, 1500 m and 2500 m; see Figure 3c).

The mean (6.26 m/s; Table 1) and median of wind speed (m/s) at the start of sampling are
fairly similar, with a high density of data around the median (6.00 m/s; see Figure 3d and
Table 1). This suggests stable wind conditions (m/s) at the start of sampling. The key statistics
and the figure for the wind speed (m/s) at the end of sampling are available in the 𝑖𝑚𝑔 file on
GitHub. The standard deviation of water temperature (°C) is relatively high (1.73 °C; Table 1)
compared to the mean (1.45 °C; Table 1), suggesting acclimatization of Cumacea to a variety
of habitat temperatures (-0.85 °C – 4.28 °C; see Figure 3e and Table 1). The range of data for
O₂ concentration (mg/L) shows some variability (245.53 mg/L – 292.97 mg/L; see Figure 3f
and Table 1) in the environmental conditions. This reflects a diversity of requirements in
terms of O₂ concentration (mg/L), with Cumacea potentially affected by the heterogeneity
of biogeochemical cycles, such as photosynthesis, respiration, and organic decomposition,
which affect depth-dependent dissolved O₂ concentration (mg/L).

The distribution and diversity of the various Cumacea species and family found are
shown in Figure 4. It shows that the most represented species are Leptostylis ampullacea
(14.1%) and Leucon pallidus (12.5%). In contrast, species like Bathycuma brevirostre and
Styloptocuma gracillimum are less represented (1.6%), implying that some species may
have restricted ecological niches or face ecological forces that limit their distribution. The
dominance of certain species (such as Leptostylis ampullacea and Leucon pallidus) suggests
that they may have adaptive traits that enable them to make the most of the accessible
resources, resist interspecific competition, or survive in fluctuating ecosystemic conditions,
aligns with our study’s aim of relating genetic adaptation to habitat characteristics.

The figure above supports the objective of our study by showing the distribution of the
different Cumacea families in the various water masses (see Figure  5). The Diastylidae
family, for example, is the most common in all water masses (turquoise color in Figure 5),
testifying to its resilience and ecological adaptability to a wide variety of habitat conditions,
reminiscent of the dominance of Leptostylis ampullacea which belongs to the Diastylidae
family (see Figure 4, 14.1%).

The distribution of the different Cumacea families according to the type of habitat where
they were collected during sampling is shown in Figure 6. The deep-sea habitats show the
greatest diversity of families, mainly Diastylidae and Lampropidae, suggesting they are
well acclimatized to deep-sea conditions. In contrast, the slope has the lowest diversity,
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Figure 4.  Cumacea frequency distribution by species and family. The percentages (%) displayed above the
bars indicate the relative abundance of each species in our dataset. Unlike less common species, those that
are abundant (such as Leptostylis ampullacea and Leucon pallidus) may have adaptive characteristics
that enable them to exploit resources more easily, resist interspecific competition or withstand changing
biological conditions.

with Diastylidae again the most dominant, implying that some Cumacea species have fewer
ecological niches or are less adapted to this habitat. Although less diverse than the deep sea,
the shelf is dominated by Leuconidae, indicating that this family may be specifically well-
acclimated to this habitat. These patterns imply that certain Cumacea families, such as the
Diastylidae, Lampropidae, Leuconidae, Pseudocumatidae, and Astacidae, have developed
distinct adaptations (physiological, behavioral, or morphological) to remain in particular
ecological niches, reflecting the impact of habitat conditions on the genetic distribution of
Cumacea.

Figure 5.  Distribution of Cumacea families by water mass. This histogram represents the frequency of
occurrence of the different Cumacea families, classified according to the water mass in which they were
collected. Eight water mass categories are represented: Arctic Polar Water (APW), Arctic Polar Water/
North Sub	Arctic Intermediate Water (APW/NSAIW), Iceland Scotland Overflow Water (ISOW), Labrador
Sea Water (LSW), North Atlantic Water (NAW), North Sub	Arctic Intermediate Water (NSAIW), cold North
Sub	Atlantic Deep Water (NSDWc), and warm North Sub	Atlantic Deep Water (NSDWw). The presence
of the Diastylidae (turquoise) family in the majority of water bodies (APW, APW/NSAIW, ISOW, NSAIW,
NSDWc, and NSDWw) accentuates the resilience and ecological acclimatization of this family to various
ecological niches and conditions.
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Figure 6.  Distribution of Cumacea families by habitat. This histogram represents the frequency of occur	
rence of the different Cumacea families, classified according to the habitat in which they were collected.
Three habitat categories are represented: Deep Sea, Shelf, and Slope. The presence of Cumacea families
in more than one habitat, such as Diastylidae (turquoise), Lampropidae (blue), Leuconidae (purple),
Pseudocumatidae (pink), and Astacidae (red), may indicate the development of adaptations, whether
morphological, physiological or behavioral, that could favor their persistence in these habitats.

The divergence between specific genetic sequences and two variables, one climatic (wind
speed (m/s) at the start of sampling) and the other environmental (O₂ concentration (mg/L))
is presented in Figure 7 and Figure 8. All the variables given in the first step of the Section 4.6
were analyzed and the configuration parameters are available in the 𝑠𝑐𝑟𝑖𝑝𝑡𝑠 Python file on
GitHub. However, only these two show the most interesting rate of divergence. Using the
three metrics mentioned in the Section 4.7, we noticed that the Euclidean distance is partic-
ularly sensitive to our data, manifesting considerable sequence variation at the position in
MSA 560-569 amino acids (aa) (Euclidean distance: 0.85; see Figure 7d) and 1210-1219 aa
(Euclidean distance: 1.23; see Figure 8d). The fluctuations in wind speed (m/s) at the start of
sampling and in O₂ concentration (mg/L) do not appear to explain the variations in these two
specific windows. This could indicate the absence of directional selection in these sequences
due to these habitat variables, local selective pressures not considered in our analysis, or
other evolutionary factors (e.g., genetic drift or biotic interactions) predominate over these
two variables concerning these two sequences. On the other hand, this may suggest that
these two variables could potentially influence the divergent (i.e., genetic diversification)
rather than a convergent adaptation of these Cumacea, reflecting unique evolutionary
responses to these specific ecological pressures. These results are consistent with the aim of
our study, which is to identify the Cumacea genetic region that diverges most as a function
of habitat variables, to determine whether this is due to divergent local adaptation or other
evolutionary processes.

These results provide important insight into the genetic adaptation of Cumacea to their
environment. These results need to be analyzed in greater depth to certify their involve-
ment, especially in contrast with [3], which investigated similar topics of environmental
and climatic effects on Cumacea distribution and genetics. The aPhyloGeo package is still in
the process of being updated.

6. Conclusion
This study examines the effects of meteorological, regional, and ecosystemic variables on
the genetics of Cumacea in the waters surrounding Iceland. Our main objective is to deter-
mine whether there is a discrepancy between the genetic informations of the partial 16S
rRNA mitochondrial gene sequence (i.e. a window) of Cumacea species and their habitat
variables. In addition to data distribution representations (see Figure 3, Figure 4, Figure 5
and Figure  6), DNA sequence analyses, using the aPhyloGeo software, have identified
specific genetic windows that diverge from atmospheric and biological variables such as
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Figure 7.  Analysis of fluctuations in three distance metrics using multiple sequence alignment (MSA): a)
Robinson	Foulds distance, b) normalized Robinson	Foulds distance, and c) Euclidean distance. Distance
variations are studied to establish the potential dissimilarity between the partial sequence of the 16S
rRNA mitochondrial gene of 62 Cumacea specimens and the variability of wind speed (m/s) at the start of
sampling.

wind speed (m/s) at the start of sampling (Position in MSA: 560-569 aa; Euclidean distance:
0.85; see Figure 7d) and O₂ concentration (mg/L) (Position in MSA: 1210-1219 aa; Euclidean
distance: 1.23; see Figure 8d). These results could mean that these specimens have been
shaped by these unique local environments, resulting in genetic sequences adapted to their
particular conditions.
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Figure 8.  Analysis of fluctuations in three distance metrics using multiple sequence alignment (MSA):
a) Robinson	Foulds distance, b) normalized Robinson	Foulds distance, and c) Euclidean distance. These
distances aim to determine the degree of dissimilarity between the partial sequence of the 16S rRNA
mitochondrial gene of 62 Cumacea specimens and the variation in O₂ concentration (mg/L) at the sampling
sites.

The novelty in our research lies in the exhaustive divergence between habitat variables
and genetic divegence in Cumacea, particularly in identifying genetic windows that diverge
from habitat fluctuations, which has not been widely investigated in previous studies [14],
[21]. Our integrated method identifies specific genetic regions sensitive to ecosystemic and
atmospheric variations. Thus, the eventual identification of proteins linked to one of these
variable DNA sequences will make it possible to represent its functional effects in responses
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to habitat changes. Our future research will focus on verifying the prediction of this protein
and assessing its role in the physiological adaptation of Cumacea to fluctuating conditions,
adding a link between genetic data and ecological function.

Interpreting how marine invertebrates genetically adapt to variations in their habitat can
help predict their response to climate change and advance conservation plans to protect
them. Identifying the variables that influence genetic variability in Cumacea can contribute
to the designation and supervision of marine protected areas, assuring they include habitats
crucial to the survival and acclimatization of these species. Thus, our results can inform the
management of fishing and seabed mining companies by revealing ecologically vulnerable
areas where these disturbances can seriously affect benthic biodiversity.

Furthermore, our results provide essential knowledge to guide future studies on the genetic
adaptation of Cumacea and other invertebrates to ecological and regional variability. Based
on these findings, future research should focus on additional ecosystemic and meteorolog-
ical variables, such as nutrient accessibility, water pH, ocean currents, and the degree
of human disturbance, to further improve the interpretation of the complex interactions
between genetics and the environment. Extending the scope of application to other marine
species, not just marine invertebrates, and various spatial regions would provide a better
means of generalizing the results. With this in mind, longitudinal study models on these
different species could reflect long-term climatic and biological fluctuations, and improve
knowledge of the dynamics of genetic acclimatization.

However, it is important to recognize the limitations of our study. In particular, the three
missing data points on O₂ concentration (mg/L) and the relatively small sample size (𝑛 = 62)
may have induced a bias, which could impact the validity of our interpretations and restrict
the generalizability of our results. Moreover, these missing data could provide partial
insight into the relationship between O₂ concentration (mg/L) and genetic fluctuation in
Cumacea, and our sample size may reduce the statistical power of our results. Future studies
should address these gaps by incorporating larger sample sizes and more complete datasets
to confirm and expand our conclusions. Additionally, as our research focuses solely on the
partial sequence of the mitochondrial 16S rRNA gene, utilizing more elaborate genomic
methods, such as whole-gene or even whole-genome sequencing, could help better under-
stand marine species’ genetic variety and global acclimatization mechanisms. This would
provide more comprehensive genetic databases to improve accuracy and knowledge in
identifying existing (and new) marine invertebrate species using DNA barcoding (e.g., mi-
tochondrial DNA cytochrome c oxidase I (COX1)). Finally, multidisciplinary collaborations
between ecology, genetics, and oceanography would be essential to enhance knowledge
sharing and its application in future research.
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Abstract

Machine learning (ML) is revolutionizing a wide range of research areas and industries, but
many ML projects never progress past the proof-of-concept stage. To address this problem,
we introduce Model Share AI (AIMS), a platform designed to streamline collaborative model
development, model provenance tracking, and model deployment, as well as a host of
other functions aiming to maximize the real-world impact of ML research. AIMS features
collaborative project spaces and a standardized model evaluation process that ranks model
submissions based on their performance on holdout evaluation data, enabling users to
run experiments and competitions. In addition, various model metadata are automatically
captured to facilitate provenance tracking and allow users to learn from and build on previous
submissions. Furthermore, AIMS allows users to deploy ML models built in Scikit-Learn,
TensorFlow Keras, or PyTorch into live REST APIs and automatically generated web apps with
minimal code. The ability to collaboratively develop and rapidly deploy models, making them
accessible to non-technical end-users through automatically generated web apps, ensures
that ML projects can transition smoothly from concept to real-world application.

Keywords Machine Learning, MLOps, Model Deployment, Provenance Tracking,
Crowdsourcing

1. Introduction
Machine learning (ML) is revolutionizing a wide range of research areas and industries,
providing data-driven solutions to important societal problems. The success of many ML
projects depends on effective collaboration, rigorous evaluation, and the ability to deploy
models. Traditionally, researchers and practitioners have been using version-control sys-
tems like GitHub in combination with custom model evaluation and benchmarking exper-
iments to ensure reproducibility and to compare models. However, these systems tend to
lack easy-to-use, structured pathways specifically designed to collaboratively develop and
rapidly deploy ML models. Furthermore, the creation of custom resources for model evalu-
ation, benchmarking, and deployment, can require substantial upfront effort. As a result,
most models do not progress past the proof-of-concept stage and are never deployed [1], [2],
preventing a wider audience from participating in the promise of applied ML research.

While the recent rise of platforms like Hugging Face Hub [3], TensorFlow Hub [4], and
MLflow [5], [6], [7], illustrates the demand for open-source model repositories and MLOps
solutions, barriers of entry are still high for researchers, educators, and practitioners from
non-technical disciplines. Model Share AI (AIMS) addresses this problem by providing
a lightweight, easy-to-use alternative. In a few lines of code, users can create Model Play-
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grounds - standardized ML project spaces that offer an all-in-one toolkit for collaborative
model improvement, experiment tracking, model metadata analytics, and instant model
deployment, allowing researchers to rapidly iterate on ML models in one streamlined work-
flow. The present paper provides an introduction to AIMS by situating it in relation to other
current solutions and outlining its key functions, technical background, and workflow.

2. Related Work
The primary objective of AIMS is to offer an easy pathway to organize ML projects by
reducing common and complex tasks down to minimal code. Its approach builds on the
work of various projects focused on providing value for common ML tasks (e.g., model
improvement, version tracking, deployment, etc.). Currently, there are several open-source
tools and platforms, such as Hugging Face Hub [3], TensorFlow Hub [4], MLflow [5], [6],
[7], and OpenML [8], [9], [10], providing ML model repositories where researchers can find
and download model objects or deploy models. Hugging Face Hub [3] is a platform allowing
users to share pre-trained models, datasets, and demos of ML projects. It has GitHub-
inspired features for code-sharing and collaboration, such as discussions and pull requests,
and it includes a pathway for model deployment into API endpoints. Similarly, TensorFlow
Hub [4] is a repository and library for reusable ML in TensorFlow, enabling users to fine-
tune and deploy deep learning models. Deployment is facilitated by TensorFlow Serving
[11], which allows users to make their models accessible on a server through API endpoints.
MLflow [5], [6], [7] is an open-source platform that manages the end-to-end ML lifecycle.
It provides experiment tracking, code packaging, a model registry, model serving, and
integration with all popular ML frameworks. While Hugging Face Hub, TensorFlow Hub,
and MLflow are well suited for large-scale deep learning tasks, OpenML [8], [9], [10], focuses
more on classic ML and model reproducibility. Here, researchers can share, explore, and
experiment with ML models, datasets, and workflows, but there is currently no option
for model deployment. The OpenML API provides access through various programming
languages, but users can also employ an OpenML web interface to browse and visualize
data, models, and experiments.

Hugging Face Hub and TensorFlow Hub are primarily model-focused platforms, providing
repositories of pre-trained models that users can fine-tune for their specific purposes.
OpenML and MLflow, on the other hand, are more task-focused, emphasizing model
evaluation and benchmarking on standardized tasks. While all of these platforms are
extensively used by ML researchers and practitioners, including for industry-scale projects,
their wide range of features and customizations can be overwhelming for researchers
from non-technical disciplines, students, and educators. In comparison, AIMS stands out
by prioritizing ease of use and a hyper-collaborative approach. Unlike Hugging Face Hub
and TensorFlow Hub, AIMS emphasizes model metadata analytics and task-focused collab-
oration. Compared to MLflow, it offers more community-based features like competitions
that promote collective problem-solving and crowd-sourcing. Moreover, while OpenML
excels in model evaluation and benchmarking, AIMS provides additional capabilities for
model deployment, allowing users to share models directly from their local environment
into live REST APIs and auto-generated web applications. Taken together, the key distinc-
tions of AIMS are its beginner-friendly design and its strong focus on collaborative model
development, as well as its goal of providing value not just for ML researchers but also for
researchers, practitioners, and educators from non-technical disciplines.

3. Model Share AI
AIMS provides standardized ML project spaces (Model Playgrounds; see Figure  1) with
accessible MLOps features designed to support collaborative model development, model
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Figure 1.  A Model Playground is a standardized ML project space, representing a ML task that is
associated with a specific dataset and a task type (classification, regression). A Model Playground
includes Experiments and Competitions for collaborative model development, a model registry with model
metadata and user-generated code, as well as deployment functionalities including a live REST API and
pre-built web-apps.

metadata analytics, and model deployment, as well as a host of other functions aiming
to maximize the real-world impact of ML research. As such, it simplifies, combines, and
extends the capabilities of current solutions in 4 important ways:

1. Collaborative model development: AIMS facilitates collaborative model development
and crowd-sourcing through standardized model evaluation procedures, experiment
tracking, and competitions.

2. Model registry: AIMS hosts model objects, as well as model metadata, automatically
extracted from each model submission, enabling users to analyze which modeling
decisions lead to high performance on specific tasks.

3. Model deployment: Model deployment is simplified considerably, allowing users to
share their models into live REST APIs and pre-built web apps directly from their
Python training environments with just a few lines of code.

4. AIMS provides a wide range of supporting functionalities, including workflows for
reproducibility, data sharing, code sharing, creating ML project portfolios, and more.

3.1. Key Functions

3.1.1. Collaborative Model Development:

A key feature of AIMS is its focus on collaborative model development and crowd-
sourced model improvement, enabling teams to iterate quickly by allowing collaborators
to build on each other’s progress, even across libraries. For supervised learning tasks, users
can collaboratively submit models into Experiments or Competitions associated with a
Model Playground project in order to track model performance and rank submissions in
standardized leaderboards according to their evaluation metric of choice. Experiments and
Competitions are set up by providing holdout evaluation data against which the predictions
of submitted models are evaluated. Standardized model evaluations allow collaborators to
track the performance of their models along with a wide range of model metadata that
are automatically extracted from submitted models and added to the model registry (see
section below). Out of the box, AIMS calculates accuracy, f1-score, precision, and recall
for classification tasks, and mean squared error, root mean squared error, mean absolute
error, and 𝑅2-scores for regression tasks. The main difference between Experiments and
Competitions is that a proportion of the evaluation data is kept secret for Competitions,
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preventing participants from deliberately overfitting on evaluation data. Being able to
submit models into shared Experiments enables ML teams to standardize tasks, rigorously
track their progress, and build on each other’s success, while Competitions facilitate crowd-
sourced solutions. Both Experiments and Competitions can be either public (any AIMS user
can submit) or private (only designated team members can submit). Users can deploy any
model from an Experiment or Competition into the REST API associated with their Model
Playground with a single line of code.

3.1.2. Model Registry:

Model versions are made available for each Model Playground and comprehensive model
metadata are automatically extracted for each submitted model. In addition to evaluation
metrics, this includes hyperparameter settings for Scikit-Learn models and model archi-
tecture data (such as layer types and dimensions, number of parameters, optimizers, loss
function, memory size) for Keras and Pytorch models. Users can also submit any additional
metadata they choose to capture. Model metadata are integrated into Competition and
Experiment leaderboards, enabling users to analyze which types of models tend to perform
well for a specific ML task. Users can either visually explore leaderboards on their Model
Playground page or they can download leaderboards into Pandas data frames to run their
own analyses. There is also a set of AIMS methods designed to visualize model metadata. For
example, models can be compared in a color-coded layout showing differences in model ar-
chitectures and hyperparameter settings. Furthermore, users can instantiate models from
the AIMS model registry into reproducible environments. Taken together, these functions
are designed to streamline the management, collaboration, and deployment of ML models,
enhancing their discoverability, reproducibility, and traceability throughout their lifecycle.

3.1.3. Instant Model Deployment:

AIMS currently allows users to deploy ML models built in Scikit-Learn [12], Tensorflow
Keras [13], [14], and Pytorch [15] into live REST APIs rapidly with minimal code. Addition-
ally, users can deploy models from other ML frameworks by transforming them into ONNX
(Open Neural Network Exchange) format - an open-source format for standardized repre-
sentations of ML models with the goal of making them interoperable across platforms.
Each deployed model is associated with a Model Playground page on the AIMS website and
a REST API endpoint hosted in a serverless AWS backend. End-users can either manually
upload data to make predictions using an automatically generated web app on the Model
Playground Page, or they can programmatically query the REST API associated with the
model. In addition to auto-generated web apps, AIMS enables users to submit their own
Streamlit apps. Out of the box, AIMS supports models built on tabular, text, image, audio,
and video data. Allowing users to deploy models with minimal effort and making those
models accessible to even non-technical end-users through web apps holds the promise of
making ML research applicable to real-world challenges.

Figure 2.  Overview of the AIMS architecture. The AIMS Python library allows users to create Model
Playground pages, submit and deploy models, and analyze model metadata. The modelshare.ai website
provides a graphical user interface to explore model metadata and generate predictions via auto-
generated web apps. All required resources are automatically generated in scalable serverless cloud
infrastructure.
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3.2. Architecture

AIMS consists of three main components: an open-source Python library, user-owned cloud
backend resources, and the AIMS website (see Figure 2). The AIMS Python library is the
main interface allowing users to set up Model Playground pages (including Experiments
and Competitions), submit and deploy models, analyze model metadata, and reproduce
model artifacts. It provides an accessible layer that facilitates the creation of the cloud
backend resources that power REST APIs, as well as model evaluations and model meta-
data extraction. The ModelPlayground() class acts as a local representation of a Model
Playground page and its associated REST API. It provides a range of methods to configure,
change, and query Model Playground resources. A detailed overview of the Python library
is provided below (AIMS Workflow).

The cloud backend hosts model objects and associated artifacts in S3 storage, while REST
APIs are deployed into serverless lambda functions. Lambda functions are programs or
scripts that run on high-availability AWS compute infrastructure. They can be invoked
by various event sources (e.g., API calls) and scale automatically based on the volume
of incoming requests. This means that users do not have to maintain servers, and they
only pay for the time and resources actually consumed, but not for idle time. The AIMS
Python library allows users to automatically generate and deploy lambda functions based
on specific properties of their ML tasks, without the need to explicitly manage any AWS
resources. The most important lambda functions in the context of AIMS are the Evaluation
Lambda, which computes evaluation metrics and extracts model metadata from submitted
models, and the Main Lambda, which computes predictions on data submitted through
the REST API. Runtime models are automatically packaged into Docker containers that run
on lambda. Additionally, certain metadata are stored in a centralized Redis database that
powers the modelshare.ai website.

The AIMS website hosts user profile pages, model pages, web apps, example code, and a
documentation page, as well as user-generated code and documentation for their specific
ML projects (see Supplementary Information A-E).

3.3. AIMS Workflow

The AIMS workflow is designed to help teams collaboratively and continuously train, eval-
uate, improve, select, and deploy models using standardized ML project spaces or Model
Playgrounds. After training a model, users submit their model to a Competition or Exper-
iment associated with a Model Playground. The model is then automatically evaluated, and
model metadata are extracted. Evaluations and metadata are made available via a graphical
user interface on the Model Playground page or can be queried using the AIMS Python
library, enabling users to analyze which types of models perform well on a given learning
task. This information can then be used to either improve the training process and submit
more models or to select a model and instantly deploy it with a single line of code. Deployed
models can easily be swapped out if they degrade over time or if they are outperformed by
new submissions. An overview of the process can be found in Figure 3.

In order to use AIMS, users first need to create an AIMS user profile and generate credentials
through the AIMS website. Additionally, users are required to generate AWS credentials if
they wish to deploy models into their own AWS resources.

The AIMS workflow is centered around the concept of Model Playgrounds. A Model Play-
ground is a standardized ML project space, representing an ML project that is associated
with a specific dataset and a task type, such as classification or regression. A Model Play-
ground is first instantiated locally using the ModelPlayground() class of the AIMS Python
library. Here, users need to specify the input_type (tabular, text, image, audio, etc.) and
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Figure 3.  MLOps workflow with AIMS. Users iteratively train, submit, evaluate, and analyze their
models. As contributors have access to model evaluations, model architecture metadata, and reproducible
model objects of previous submissions, they can rapidly develop high-performing models. Submitted
models can easily be deployed into live REST APIs. Deployed runtime models can be monitored and
seamlessly be swapped out against newly submitted models.

the task_type (classification, regression), as well as select whether their Model Playground
should be public or private. Private Model Playgrounds can only be accessed by invited
collaborators, whereas public Model Playgrounds are open to all AIMS users. After instan-
tiating their Model Playground object, users can create an online Model Playground page
by calling the create() method and submitting their evaluation data. This generates a fully
functioning Model Playground Page on the AIMS website, including a placeholder REST API,
and enables users to submit models into associated Experiments and Competitions.

Once a Model Playground Page is created, users can start submitting models to Experiments
or Competitions and deploy models into the Model Playground’s REST API. A model submis-
sion includes a model object (Scikit-Learn, Keras, PyTorch, ONNX), a preprocessor function,
and a set of predicted values corresponding to the previously submitted evaluation data.
The predictions are then evaluated against the evaluation data, and model metadata are
automatically extracted from model objects. Users can submit additional metadata in dic-
tionary format using the custom_metadata argument of the submit_model() method. After
submitting one or more models, users can explore evaluations and model metadata on the
associated Model Playground page or query this information for further analysis using the
get_leaderboard() and compare_models() methods. To inspect and improve models, users
can instantiate models from the leaderboard using the instantiate_model() method. Alter-
natively, users can instantly deploy a model using the deploy_model() method by referring to
the model’s leaderboard version number. Additionally, users should submit example data,
which will help end-users format their input data correctly, and y training data to help
the web app and prediction API transform raw model outputs into the correct labels. As
mentioned above, the process does not stop when a model is deployed. Users can submit
and analyze more models, informed by previous submissions, and easily monitor and
swap out the runtime model using the update_runtime_model() method. An overview of the
model deployment process, including code, is available in Figure 4. Detailed tutorials and
documentation can be found in Supplementary Information A.

4. Impact
Collaborative model improvement and crowd-sourcing are important, not only because
they make teams more efficient but also because they foster diverse perspectives. Such
collective efforts can contribute to the democratization of ML, provide access to resources
for a wider audience, and enable community-driven innovation. For instance, the AIMS
Competition feature can facilitate crowd-sourced research projects in various disciplines
utilizing the common task framework. Relatedly, the AIMS model registry promotes discov-
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Figure 4.  Model deployment process: Models can be deployed with just a few lines of code. After instan-
tiating a local Model Playground object, users can create a Model Playground page that is ready for model
submissions. Submitted models are automatically evaluated and can be deployed into live REST APIs.

erability, transparency, and reproducibility by providing a centralized platform for users
to find models and their associated metadata. Sharing model metadata, such as model
architectures, hyperparameters, training data, and evaluation metrics, allows researchers
to verify previous results and build upon each other’s work. The repository also acts as
an educational resource, offering students, educators, and self-learners the opportunity
to study various ML models, techniques, and best practices. For example, AIMS has thus
far been extensively used in classrooms at Columbia University and beyond to organize
challenges, collaboratively work on ML projects, and make models accessible through API
endpoints. In addition, AIMS is positioned to realize several important missions with regard
to model deployment. Firstly, simplifying model deployment is important because it lowers
barriers to entry, allowing more developers, researchers, and organizations to incorporate
ML in their projects. Secondly, easier deployment saves resources and time, so that devel-
opers can dedicate more effort to model training, tuning, and evaluation. Ultimately, a
streamlined deployment process allows users to iterate faster and explore novel ideas in
real-world contexts.

5. Future Work
While AIMS provides a simple approach to collaborative model development and deploy-
ment, there are opportunities for further improvements. Firstly, it is important to strike
the right balance between flexibility and ease of use. A highly flexible platform may allow
researchers to use various ML frameworks and libraries, accommodate a wide range of data
sources and formats, and support custom deployment strategies. However, this flexibility
may come at the cost of increased complexity and a harder learning curve for users. On
the other hand, a more user-friendly solution might provide a simpler, more streamlined
interface but may lack the flexibility to accommodate unique or complex requirements.
By default, AIMS prioritizes standardization and ease of use, making it attractive for
researchers, educators, and data scientists who are interested in quick and lightweight
solutions. For users who want more flexibility, AIMS provides customizations, such as
custom AWS lambda functions, custom containers, and custom metadata submissions. We
will continue to extend the functionality of AIMS to make it useful for a wide range of users
and applications. This includes making the platform compatible with more advanced model
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types, task types, and ML frameworks (e.g., PySpark). Relatedly, future work could include
additional MLOps functionality, including improved pathways for monitoring, model ex-
plainability, continuous retraining, and automated ML (AutoML) [16], [17]. The latter point
is of special interest, as each new model submission contributes to a growing repository
of evaluated, reusable ML models, including rich model metadata. These resources can be
utilized to suggest pre-trained models that are expected to work well for a given task or
enable users to run their own analyses to choose pre-trained models. We hope that AIMS
will become a resource for researchers interested in meta-learning [18], [19] and related
problems. Additionally, we expect AIMS to be used increasingly by researchers from various
disciplines, including social sciences and natural sciences, trying to solve substantive ques-
tions through ML. We are planning to further accommodate their diverse needs in order
to promote cross-fertilization and widespread participation in the promise of applied ML
research.

6. Conclusion
AIMS provides a versatile yet easy-to-use approach to collaborative model development,
model metadata analytics, and model deployment. It enables users to quickly find, analyze,
and collaboratively improve trained ML models, and to share models from their local
environment directly into live REST APIs and pre-built web applications in a single tightly
integrated workflow. Compared to existing solutions, AIMS is intended to lower the barriers
of entry to ML research, making it attractive to a large group of researchers, educators, and
data scientists. We are confident that AIMS will become a widely used tool and maximize
the real-world impact of ML research.
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Abstract

Discover how scikit-build-core revolutionizes Python extension building with its seamless
integration of CMake and Python packaging standards. Learn about its enhanced features
for cross-compilation, multi-platform support, and simplified configuration, which enable
writing binary extensions with pybind11, Nanobind, Fortran, Cython, C++, and more. Dive
into the transition from the classic scikit-build to the robust scikit-build-core and explore its
potential to streamline package distribution across various environments.

Keywords Build system, CMake

1. Introduction
Python packaging has evolved significantly in the last few years. Standards have been
written to allow the development of new build backends not constrained by setuptool’s
complex legacy. Build time dependencies, once nearly impossible to rely on, are now the
standard, and required for any build system, including the original setuptools. And this new
system is controlled by one central location, the pyproject.toml file.

We present scikit-build-core: a new build system based on these standards that brings
together Python packaging and the CMake build system, the popular general purpose build
system for languages like C, C++, Fortran, Cython, and CUDA. Together, this new system
provides a simple entry point to building extensions that still scales to major projects.
This allows everyone to take advantage of existing libraries and harness the performance
available in these languages.

We will look at creating a package with scikit-build-core. Then we will cover some of it’s
most interesting and innovative features. Then we will peer into the design and internal
workings. Finally, we will look at some of the packages that adopted scikit-build-core. A lot
of the ecosystem was improved, even beyond scikit-build-core, as part of this project, so we
will also highlight some of that work.

2. History of packaging
Python has a long history compared to modern languages with first-party packaging solu-
tions; packaging wasn’t something that was considered important for Python for quite a
while. Python gained a standard library module to help with packaging called distutils in
Python 1.6 and 2.0, in the year 2000, nearly ten years after the initial release. Distribution
was difficult, leading to packages containing large numbers of distinct modules (such as
SciPy [1]) to reduce the number of packages one had to figure out how to install, and
“distributions” of Python to be created, such as the Enthought distribution. This eventually
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led to the creation of Conda, a modular binary package manager that was particularly good
at (and written in) Python.

Several developments greatly improved Python’s packaging story, such the addition of a
new binary format, the “wheel” made distributing binaries easier. This, along with new
hardware and a changing installation landscape highlighted an issue with putting a pack-
aging tool in the standard library: you can’t freely update the standard library. Third party
“extensions” to distutils appeared; the one that became the main tool for many years is
setuptools. It wasn’t long before setuptools became required; building directly with distutils
was too buggy, and setuptools was injecting patches into distutils when it loaded.

Package installers, originally easy_install and then the more full-featured pip came along.
pip was tightly coupled to setuptools, and even helped it out by making sure it’s injections
to distutils were done, even if packages didn’t import setuptools first or at all. Pip was
directly and deeply tied to setuptools; if you wanted to build a package, setuptools was the
only answer. Even if you make the SDist (Python’s source distribution format) and wheel(s)
(Python’s binary distribution format) yourself, which was actually pretty easy, as those were
standardized, you couldn’t make sure that pip wouldn’t try to use setuptools to build a wheel
from an SDist.

Faults in the organically grown distutils/setuptools quickly became apparent. You couldn’t
tell the installer to update setuptools from setup.py, because it was just a Python file that
was being run. It was hard to declare built-time dependencies (though they really did try
by running the Python file twice, the first time with stubs). You couldn’t parse metadata
without running the setup.py. It was hard to extend the setuptools commands, and the
entire API was public, which meant it was really hard to fix something without breaking
everyone else.

Third party tools for building packages started showing up, like Flit and Poetry. These
worked by making a compatibility setup.py and injecting it into the SDist, just in case pip
needed to build the wheel. This is when standardization efforts, in the form of PEPs, began
to change the packaging landscape forever.

PEP 517 [2] defined an API for build-frontends (like pip) to talk to build-backends (like
setuptools). PEP 518 [3] defined an isolated build environment, which would allow builders
to download build dependencies, like a specific version of setuptools or a plugin. Later, PEP
621 [4] would add a standard way to define basic package metadata, and PEP 660 [5] would
add an API for editable installs.

Python build backends started to appear. Most of the initial build backends were were
designed for Python-only packages. flit-core, poetry-core, pdm-backend, and hatchling are
some popular build backends that support some or all of these PEPs. Setuptools also ended
up gaining support for all these PEPs, as well.

Compiled backends were a bit slower, but today we have several great choices. scikit-build-
core for CMake, meson-python for Meson, and maturin for Cargo (Rust) are the most popular.
enscons for SCons should get a special mention as the first binary build backend, even though
it is mostly a historical curiosity at this point.

A side note on Conda: like most general package managers, it runs arbitrary commands
from a recipe to build and install the package, then it captures the installed files. Many
Python packages use the pip install . command, but any commands can be placed here,
including native CMake calls; as long files are placed in the right place, the result can be
used from conda installed Python. Though packages doing this may forget to generate a
<package>.dist-info directory, which is used by things like importlib.metadata.
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3. Scikit-build (classic)
The original scikit-build [6] was released as PyCMake at SciPy 2014, and renamed two years
later, at SciPy 2016, following the “scikit” convention introduced by SciPy. Being developed
well before the packaging PEPs, it was designed as a wrapper around distutils and/or
setuptools. This design had flaws, but was the only way this could be done at the time.

Because it was deeply tied to setuptools internals, updates to setuptools or wheel often
would break scikit-build. There were a lot of limitations of setuptools that scikit-build
couldn’t alleviate properly.

However, it did allow users to use a real build system (CMake) with their Python projects.
A notable example are two packages produced by the scikit-build team: ninja and cmake
redistributions on PyPI. Users could pip install cmake and ninja anywhere that wheels
worked.

In 2021, a proposal was written and accepted by the NSF to fund development on a new
package, scikit-build-core, built on top of the packaging standards and free from setuptools
and other historical cruft. Work started in 2022, and the first major package to switch was
Awkward Array, at the end of that year.

4. Using scikit-build-core

4.1. Binary Python package generation overview

Figure 1 provides an overview of modern binary Python package generation. The package
developer begins by defining the package structure, incorporating package source files, a
CMakeLists.txt CMake configuration, and a pyproject.toml file adhering to PEP 517 specifi-
cations. To initiate the package build process, the developer employs a Build Frontend tool,
such as pip or build, and may supply optional configuration parameters. The chosen Build
Frontend then triggers the PEP 517 Build Backend, exemplified by scikit-build-core, which
in turn employs CMake, managing configuration options appropriately. Utilizing a blend
of build system introspection and configured options alongside the CMakeLists.txt logic,
CMake generates a native build system configuration. This native build system, whether
Ninja configuration files, Unix Makefiles, Visual Studio Project Files, etc., defines dependen-
cies for the artifacts produced by the native toolchain, which is responsible for compiling
C/C++ source code into native binaries.

Once configured, scikit-build-core initiates the native build system, managing the bundling
of resulting build artifacts and metadata into a wheel. These wheels may undergo additional
processing with post-processing tools to enhance platform compatibility. End-users of the
package have the option to directly utilize the wheel via a package manager or generate
their own package by invoking the build system from a source distribution (SDist). Typically,
both the binary wheels and the source distributions are uploaded to the Python Package
Index (PyPI) for broader accessibility.

4.2. The simplest example

Scikit-build-core was designed to be easy to use as possible, with reasonable defaults and
simple configuration. A minimal, working example is possible with just three files. You need
a file to build, for example, this is a simple pybind11 module in a main.cpp:
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Figure 1.  Binary Python packaging dataflow.

#include <pybind11/pybind11.h>

PYBIND11_MODULE(example, m) {
    m.def("square", [](double x) { return x*x; });
}

You then need a pyproject.toml, and it can be as little as six lines long, just like for pure
Python:

[build-system]
requires = ["scikit-build-core", "pybind11"]
build-backend = "scikit_build_core.build"

[project]
name = "example"
version = "0.0.1"

And finally, you need a CMakeLists.txt for CMake, which is also as little as six lines:

cmake_minimum_required(VERSION 3.15...3.26)
project(example LANGUAGES CXX)

set(PYBIND11_NEWPYTHON ON)
find_package(pybind11 CONFIG REQUIRED)

pybind11_add_module(example example.cpp)
install(TARGETS example LIBRARY DESTINATION .)

And that all that is needed to get started.

4.3. Common needs as simple configuration

Customizing scikit-build-core is done through the [tool.scikit-build] table in the
pyproject.toml. An example configuration is shown below:
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[tool.scikit-build]
minimum-version = "0.10"

build.verbose = true
logging.level = "INFO"

wheel.expand-macos-universal-tags = true

On line 2, you can see the minimum-version setting. This is a special setting that allows
scikit-build-core to make changes to default values in the future while ensuring your
configuration continues to build with the defaults present the version you specify. This is
very similar to CMake’s cmake_minimum_requires feature.

On line 4-5, you can see an example of increasing the verbosity, both to print out build
commands as well as see scikit-build-core’s logs.

On line 7, you can see that scikit-build-core can expand the macOS universal tags to include
both ARM and Intel variants for maximum compatibility with older Pip versions; this is
impossible to do in setuptools unless you use API declared private and unstable in wheel.

5. Innovative features of scikit-build-core
Scikit-build-core has some interesting and powerful innovations. This section is by no
means exhaustive; it doesn’t cover scikit-build-core’s over forty different configuration
options, for example. It is instead just meant to highlight some of the most interesting
features of scikit-build-core.

5.1. Dynamic requirement on CMake/Ninja

Scikit-build-core needs CMake to build, and often ninja as well. Both are available as Python
wheels, but simply adding them to your build-system.requires list is not a good idea, because
some platforms aren’t supported by wheels on PyPI, such as WebAssembly, the various
BSD’s, ClearLinux, or Android. But these systems can get CMake other ways, such as from a
package manager, so users shouldn’t have a build fail because they can’t get a cmake wheel
if they have a sufficient version of CMake already. As it turns out, PEP 517 is flexible enough
to handle this very elegantly.

PEP 517 has an API for a build tool to declare it’s dependencies. This was initially used for
setuptools to only depend on wheel when making wheels, but it works perfectly for optional
binary dependencies as well. Scikit-build-core will check to see if cmake is present on the
system. If it is, and it reports a version sufficient for the package, it will not be added to the
requested dependencies. This is also done for ninja. This same system was added to meson-
python, as well, since Meson also requires ninja.

5.2. Integration with external packages

Scikit-build-core has three mechanisms to allow packages on PyPI to provide CMake config-
uration and tools:

• The site-packages directory is added to the CMake search path by scikit-build-core.
Due to the way CMake config file discovery works, this allows a package to provide
a <PkgName>Config.cmake file in any GNU-like standard location in the package (like
pybind11/share/cmake/pybind11/pybind11Config.cmake, for example).

• An entry point cmake.prefix, which adds prefix dirs, useful for adding module files that
don’t have to match the installed package name or are in arbitrary locations.

• An entry point cmake.module, which can be used to add any CMake helper files.
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5.3. Dual editable modes with automatic recompile

Editable installs are supported in two modes. The default mode installs a custom finder that
combines the Python files in your development directory (as specified by packages) with
CMake installed files in site-packages. It is important to rely on importlib.resources instead
of file manipulation in this mode. This mode supports installs into multiple environments.

This mode also supports automatic rebuilds. If you enable it, then importing your package
will rebuild on any changes to the source files, something that could not be done with
setuptools.

There is also an opt-in “inplace” mode that uses CMake’s inplace build to build your files
in the source directory. This is very similar to setuptools build_ext --inplace, and works
with tools that can’t run Python finders, like type checkers. This mode works with a single
environment, because the build dir is the source dir. There is no dynamic finder in this
mode, so automatic rebuilds are not supported.

5.4. Dynamic metadata

A system for allowing custom metadata plugins was contributed and has been one of the
most successful parts of scikit-build-core. Any metadata field other than the name can be
dynamically specified in Python packaging; the dynamic-metadata mechanism provides a
way for plugins to be written by anyone, including “in-tree” plugins written inside a specific
package. This gives authors quite a bit of freedom to do things like customize the package
description or read the version from a file.

This system is being worked on as a standard for other build backends to use and a
stand-alone namespace. Changes are expected, but the current implementation in scikit-
build-core uses the following API:

def dynamic_metadata(
    field: str,
    settings: Mapping[str, Any],
) -> str:
   ...

Plugins provide this function. Three built-in plugins are provided in scikit-build-core: one
for regex, one that wraps setuptools_scm, and one that wraps hatch-fancy-pypi-readme. Using
one of these looks like this:

name = "mypackage"
dynamic = ["version"]

[tool.scikit-build.metadata.version]
provider = "scikit_build_core.metadata.regex"
input = "src/mypackage/__init__.py"

The provider key tells scikit-build-core where to look for the plugin. There is also a provider-
path for local plugins. All other keys are implemented by the plugin; the regex plugin
implements input and regex, for example.

An extra feature that is not being proposed for broader adoption is a generation mechanism.
Scikit-build-core can generate a file for you with metadata provided via templating. It looks
like this:
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[[tool.scikit-build.generate]]
path = "package/_version.py"
template = '''
version = "${version}"
'''

This is extremely useful due to the location key, which defaults to install, which will put
the file only in the built wheel, build, which puts the file in the build directory, and source,
which writes it out to the source directory and SDist, much like setuptools_scm normally
does. In the default mode, though, no generated files are placed in your source tree.

5.5. Overrides

Static configuration has many benefits, but it has a significant drawback; you often want to
configure different situations differently. For example, you might want a higher minimum
CMake version on Windows, or a pure Python version for unreleased Python versions.
These sorts of things can be expressed with overrides, which was designed after overrides
in cibuildwheel, which in turn were based on mypy’s overrides. Scikit-build-core has the
most powerful version of the system, however, with an .if table that can do version
comparisons and regexs, and supports any/all merging of conditions, and inheritance from
a previous override (also added to cibuildwheel). It includes conditions for the state of the
build (wheel, SDist, editable, or metadata builds) and environment variables. An example
is shown below:

[[tool.scikit-build.overrides]]
if.platform-system = "darwin"
cmake.version = ">=3.18"

This will change the minimum CMake version to >=3.18 on macOS.

6. Scikit-build-core’s design
This section is devoted to the internals of scikit-build-core.

6.1. The configuration system

Scikit-build-core has over forty options, and each of these options can be specified in the
pyproject.toml, or via config-settings (-C in build or pip), or via environment variables
starting with SKBUILD. We also provide a JSON Schema for the TOML configuration, and
a list of all options in the README. All of these are powered by a single dataclass-based
configuration system developed for scikit-build-core.

All of the configuration lives in dataclasses that look like this:

July 10, 2024 231



Scikit-build-core  | Schreiner et al., 2024

@dataclasses.dataclass
class LoggingSettings:
    level: Literal["NOTSET", "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"] = (
        "WARNING"
    )
    """
    The logging level to display, "DEBUG", "INFO", "WARNING", and "ERROR" are
    possible options.
    """

@dataclasses.dataclass
class ScikitBuildSettings:
    cmake: CMakeSettings = dataclasses.field(default_factory=CMakeSettings)
    ninja: NinjaSettings = dataclasses.field(default_factory=NinjaSettings)
    logging: LoggingSettings = dataclasses.field(default_factory=LoggingSettings)
    ...

The system is a conversion system, originally based on cattrs, but reimplemented in pure
Python to reduce dependencies and the potential for uncontrollable breakage. The system
recognised a wide variety of types, including nested types and as seen above, literals. A
comment in a string following the option is also recognised for the JSONSchema/README
processors, because nothing has been standardized for variable docstrings, and Sphinx
understands this convention.

Converters are implemented for TOML, config-settings (dict), and environment variables.
The converters fill the ScikitBuildSettings instance with the values from the three¹ sources.
Once read in, these are just a normal fully typed dataclass, so access and usage is natural
and protected by mypy. Overrides are currently implemented via pre-processing the TOML.
A post processing step is also added to validate the settings, and produce errors/warnings
based on invalid combinations.

6.2. The File API

CMake provides a File API, which allows third party tools to read a variety of information
about the build process. Scikit-build-core has a full implementation of a reader for the File
API for use in plugins (currently not required for scikit-build-core itself).

The File API was implemented via dataclasses following the official schema. A recursive
conversion system, similar to the settings system, was implemented to convert the written
files into dataclass instances.

6.3. Plugins for other systems

Scikit-build-core 0.9.0 includes two plugins, one for setuptools, and one for hatchling. It was
designed to support making custom plugins wrapping CMake builds, so these two internal
plugins are examples of using scikit-build-core to make plugins. These will eventually be
pulled out into separate packages; being internal allowed faster iteration on the scikit-build-
core API used by plugins.

7. Adoption
Projects moving to scikit-build-core have seen over 800 lines of convoluted setup.py code
turn into 20 lines of CMake and a minimal configuration file. Often this adds new platforms,
like Windows or PyPy, that were not feasible to support before, and faster multithreaded
compile times.

¹Converters are combined using a chain converter, which allows any combination of converters; this is
used by the hatchling plugin to support four converters, since it includes hatchling’s TOML configuration
as well as scikit-build-core’s.
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7.1. Statistics

Scikit-build-core is currently the most downloaded build backend designed for compiled
languages other than Rust², with 2.7M monthly downloads³. It is used by a dozen packages in
the top 8,000 PyPI packages, like pyzmq, lightgbm, cmake, phik, and clang-format. Other packages
like ninja and boost-histogram have adopted it, but have not made a release with it yet.

It is possible to download every pyproject.toml from PyPI⁴ and perform analyses on
packages that provided an SDist. You can compute the number of packages published using
scikit-build-core (255 as of June 25, up from 82 last year), and investigate the details of how
projects are setting configuration.

We also monitor non-fork mentions of scikit_build_core in pyproject.toml’s using GitHub
Code Search, of which there are currently (July 3) 764 results, up from 92 on July 1, 2023).
This string is required as part of the build backend, so serves as a reasonable method to
track this info. A search for the more precise string scikit_build_core.build, which avoids
hatchling and setuptools plugins, provides 720 results; a similar search was not performed
last year for comparison, though.

7.2. Rapids.ai

Rapids.ai moved their package generator to scikit-build-core, affecting all their packages,
like cudf, cugraph, cuml, and rmm. They have several unusual requirements due to the need
to support cuda variants. They developed a wrapper for scikit-build-core that changes the
name of the package based on the current cuda version (something explicitly disallowed
by PEP 621) and injects modified dependencies. Discussions on ways to handle external
dependencies like CUDA without such workarounds was a major topic at the packaging
summit in PyCon US 24.

7.3. Ninja / CMake / clang-format

One powerful use case for binaries is PyPI redistribution of CLI tools. This is used for
ninja and cmake, which are first-party scikit-build-core projects, along with many third party
projects like clang-format, use this to great effect. For example, clang-format provides easily
pip-installable wheels that are under 2 MB and work on almost any system. We are not
aware of any easier way to get a working copy of clang-format.

The core idea for most of these projects is to install the binary in the scripts folder of a
wheel, which will be placed directly in a user’s path. Scikit-build-core sets CMake variables
with the various wheel folders; this one is ${SKBUILD_SCRIPTS_DIR}.

The other common need, and one very difficult to handle in a setuptools-based wrapper,
stems from the fact that these binary packages don’t build against Python, so they don’t need
to be build per Python version. This can be easily indicated in scikit-build-core by setting:

[tool.scikit-build]
wheel.py-api = "py3"

This will build a wheel that doesn’t depend on the Python API and will only depend on the
system architecture. This same setting can be used for the Limited API / Stable ABI as well,
by setting cp311 or a similar minimum value. Pythons before this value will build traditional
wheels, and after will build Stable ABI wheels.

²The Rust-only Maturin is much older and has 57 packages in the top 8,000.
³https://hugovk.github.io/top-pypi-packages
⁴https://github.com/henryiii/pystats
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7.4. PyZMQ

The python wrapper for the ZeroMQ project uses scikit-buid-core. This is their configura-
tion:

[tool.scikit-build]
wheel.packages = ["zmq"]
wheel.license-files = ["licenses/LICENSE*"]
# 3.15 is required by scikit-build-core
cmake.version = ">=3.15"
# only build/install the pyzmq component
cmake.targets = ["pyzmq"]
install.components = ["pyzmq"]

They explicitly list the package name (since it doesn’t match the project, pyzmq and their
licences files are in a non-standard location. The cmake.version setting is superfluous, since
that’s already scikit-build-core’s minimum. The cmake.targets (will be build.targets in future
versions, with back-compatibility support) and install.components are quite powerful,
though. The target list allows building just the required target for the binding, saving time.
And then installing just things marked with a specific component gives you full control over
exactly what goes into the wheel.

8. Related work
As part of this project, a lot of other packages were touched on or improved. pybind11
had some build system improvements, especially related to modern FindPython support.
Nanobind improved support for the Stable ABI, and the nanobind_example project moved to
scikit-build-core. Cibuildwheel and build were improved for all backends with extensive
testing and usage in scikit-build-core. validate-pyproject was improved and validate-pypro-
ject-schema-store was added to make it easier to use the Schema Store’s schema files,
including scikit-build-core’s, for validation of pyproject.toml’s. Scikit-build-core (along with
meson-python and maturin) were added to the Scientific Python Development Guide. Fixes
were made in Pyodide to ensure better CMake support for WebAssembly builds (which were
also added to cibuildwheel). And scikit-build-core was one of the first backends to support
free-threaded Python 3.13 builds.

9. Summary
Scikit-build-core is one of the best build systems available today for Python compiled
extensions, allowing access to a powerful compiled build tool (CMake) from the comfort of
a statically configured pyproject.toml file. It supports a wide variety of innovative controls,
including many things not possible with a setuptools build, like good config-settings support,
wheel tag customization, and more.

Support for this work was provided by NSF grant OAC-2209877.
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Abstract

The increasing volume of research data in fields such as astronomy, biology, and engineering
necessitates efficient distributed data management. Traditional commercial solutions are
often unsuitable for the decentralized infrastructure typical of academic projects. This paper
presents the Librarian, a custom framework designed for data transfer in large academic
collaborations, designed for the Simons Observatory (SO) as a ground up re-architechture of
a previous astronomical data management tool called the ‘HERA Librarian’ from which it takes
its name. SO is a new-generation observatory designed for observing the Cosmic Microwave
Background, and is located in the Atacama desert in Chile at over 5000 meters of elevation.

Existing tools like Globus Flows, iRODS, Rucio, and Datalad were evaluated but were found
to be lacking in automation or simplicity. Librarian addresses these gaps by integrating with
Globus for efficient data transfer and providing a RESTful API for easy interaction. It also
supports transfers through the movement of physical media for environments with intermit-
tent connectivity.

Using technologies like Python, FastAPI, and SQLAlchemy, the Librarian ensures robust,
scalable, and user-friendly data management tailored to the needs of large-scale scientific
projects. This solution demonstrates an effective method for managing the substantial data
flows in modern ‘big science’ endeavors.

Keywords data, python, research

1. Introduction
Research data is ever-growing, with even small projects now producing terabytes of data.
This has been matched by an increase in the typical size of workstation storage and
compute, but as many fields like astronomy, biology, and engineering continue their march
towards ‘big science’, distributed data analysis is becoming significantly more common.
As such, there is a significant need for software that can seamlessly track and move data
between sites without continuous human intervention. For the very largest of these projects
(such as the Large Hadron Collider at CERN), massive development effort has been invested
to create technologies for data pipelining, but these tools typically assume a high level of
control over the software and hardware that is running for the project.

At the same time, data science and data analytics are becoming a larger part of industrial
infrastructure, even in what appear to be non-technical fields like law, commerce, and
media. This has led to a huge increase in data engineering and pipelining software, but this
software is generally only available through private clouds like those provided by Amazon
(Amazon Web Services), Microsoft (Azure), and Alphabet (Google Cloud). These services
generally assume that there is an ingest point into one of their managed storage (e.g.
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Amazon S3), using their compute and tools for analysis (e.g. Amazon Athena and Amazon
EC2), and their tools for final data egress (e.g. Amazon API Gateway or Amazon QuickSight).
These resources are mature, performant, and a result of hundreds of thousands or millions
of developer-hours. However, they are not compatible with the current publicly-funded
science model, or the way that large, distributed, academic collaborations work.

A monolithic stack like those provided by public clouds is almost antithetical to large,
distributed, academic projects. In these projects, funding may come from a vast array
of sources (e.g. faculty members funded through their institution, large funding agencies
like the National Science Foundation, or more junior members funded through individual
fellowships), and compute may be provided by many different providers at different scales
(e.g. on-premises with the data source, small institutional Tier-2 or Tier-3 centers, or inter-
national-scale Tier-0 centers through an allocation). Pooling these funds and resources is an
almost insurmountable challenge; aside from some $10 B+ projects, even ‘massive’ multi-
hundred million dollar projects must design their staffing, software, and procedures for
a level of flexibility (and, by corollary, simplicity) that would be incomprehensible in an
industrial context.

This paper is about solving the base-level problem: how to get raw experiment data totaling
around 1 PB a year from a remote site (in our case, the top of a mountain in Chile), to various
science consumers distributed across the globe. Our data is comprised of folders (termed
‘books’), each containing 10-20 GB of data, laid out in a pre-determined scheme in a POSIX
filesystem.

2. Comparing Data Flows
In Figure 1, we show two example data flows: one for a commercial enterprise (on the top),
and one for a typical academic project (bottom; this matches closely with the needs of the
Simons Observatory).

A typical challenge for the commercial scenario is collating data from many different
sources, and processing it in a latency-sensitive manner. Consider an e-commerce platform,
which has sales data, market research, and user tracking data, which all need to be
collected and normalised to make decisions. This data, though varied, is typically small
(and all ‘owned’ in some sense by the company), meaning that it can all be placed inside
one centralised data warehouse from which analysis can be performed, and data egress
can take place (often through a shared service). Because these services must all be directly
acquired by the business, they are all at a bare minimum highly configurable and scalable. It
can hence make sense to either use a series of interconnecting services (e.g. those provided
through the Apache Software Foundation if using on-premises hardware), or a managed
service collection (e.g. using tools from AWS). The data flows, represented by arrows in this
case, are then made much simpler, and specific business logic can be programmed around
the assumption of a shared and well-known interface; this hence leads to our understanding
of these interconnected services through the data producers, flows, and products.

For an academic project, there is usually one major data source, and analysis is usually
compute-intensive. This could be an experiment or, in our case, an observatory. Connected
to this experiment there is typically a small on-site data storage and analysis facility that
repackages data and can perform simple analysis. Those running the experiment usually
have complete control over only this platform; the rest are highly locked-down shared
computing services like national facilities (e.g. NERSC) and university-managed clusters -
funding agencies typically do not support the purchase of significant compute resources,
as they maintain shared high performance computing clusters. An important corollary to
this is that different facilities may have different resources available, for instance cold
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Figure 1.  Showing a typical layout of a commercial data engineering structure (top) versus an academic
one (bottom). In a commercial context, it is typical that a significantly higher fraction of the resources
are owned (or are directly configurable, e.g. cloud services) by the user. It is also much more common to
have a centralised ‘data warehouse’ or ‘data lake’ which provides ingress and egress for all data products.
In the academic context, only a very small fraction of the compute and storage are typically owned by
stakeholders. National facilities, and even local clusters at universities, are typically rigid and cannot be
re-configured to better suit the needs of an individual experiment. Further, due to limited compute and
storage constraints, it is likely that multiple copies of experimental data must be kept at various sites, and
tight control needs to be maintained on the specific sub-sets of data stored at each.

storage for archival data, accelerators, or high-memory nodes. Data must be managed with
the understanding that these resources may have finite lifetimes, may be withdrawn, or
replaced at a completely different site. Further, as there is no centralised provider, data
replication must be managed ‘manually’ by the collaboration through their network of
shared machines, both for integrity and for availability at the sites that have different
compute resources. Working on the data, specific archival products are produced: either
those included in a data release (e.g. images, maps, etc.), and publications. Both regulation
and community standards typically leads to these products being immutable and available
forever, hosted by an external service. This reliance on external compute and storage leads
to our understanding of this workflow through the flow of data into and out of the afore-
mentioned providers.

Though they may have varied locations and resources, the computing centers are all usually
organised in a broadly similar way, with dedicated data ingest (or transfer) nodes with a fast
‘grid’ internet connection (e.g. Internet2 in the U.S., JISC in the U.K., etc.) and access to shared
disks. Compute is managed via a job scheduler (e.g. slurm), with file storage provided on
GPFS or Lustre (i.e. POSIX-like, not object store) systems. As such, much of the community
software has been built with the strong assumption that data is stored in files on a high-
performance POSIX-compliant filesystem, with analysis performed through job submission
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to compute nodes. Any data management system for such projects must hence be designed
to be compatible with this workflow.

In the specific case of the Simons Observatory [1], we have a need for a piece of software
to bring down data from our observatory at the rate of around 20 TB a week. This is
accomplished using SneakerNet, where physical media is used to transport data, and a
fiber internet connection. Our data is immutable, and in the form of ‘books’ (structured
directories of binary data), within a pre-determined directory structure that must be repli-
cated exactly on all of the downstream sites. At certain downstream sites, we have space
for all of the data from the entire project, but at others only a recent, rolling, sub-set may
be maintained.

2.1. Existing Software

Because of the significantly different constraints in the academic world versus the commer-
cial world, there is a relatively limited set of tools that can be used to accomplish the goal of
automated data management and transfer. In our search, we evaluated the following tools:

2.1.1. Globus:

Globus [2], [3] is a non-profit service from the University of Chicago, and specialises in the
batch transfer of large data products. Globus works by having an ‘endpoint server’ running
at each location, which can communicate over HTTP. Through the use of their web interface,
API, or command-line client, it is possible to request asynchronous transfers of massive
amounts of data, which are transferred at close to line speeds thanks to GridFTP being used
for the underlying data movement. Globus is used extensively in the academic community,
and is already available ubiquitously throughout the academic cluster ecosystem.

Globus, however, is not an automated tool; in general, one must tell Globus how, where, and
when to move data. It is possible to set up recurring synchronisations of data, but this either
requires complete copy at all sites (lest data that was just deleted be moved again) or that
all sub-tasks be expressible as part of a ‘Globus Flow’, which may not always be possible.
As such, Globus is more of a ‘data transfer’ tool, than a data management tool. It does not
have significant cataloguing capability.

2.1.2. Rucio and iRODS:

Rucio [4] is a distributed data management system that was originally designed for the
ATLAS high-energy physics experiment at the LHC, and as such is extremely scalable (i.e.
exabytes or more). Rucio can be backed by different levels of storage, from fast (SSD) to slow
(tape), and is declarative (meaning that one simply asks the system to follow a set of rules,
like ‘keep three copies of the data’), with its own user and permissions management system.
Rucio is an exceptionally capable piece of software, but this comes with significant com-
plexity. Further, data is managed externally to the underlying filesystem and permissions
model of the host, potentially causing issues with the user agreements at shared facilities,
and interacting with data generally requires interaction with the Rucio API. Though Rucio
is certainly a fantastic tool, we found that it was too integrated for our needs of simply
transferring data, and the declarative system is incompatible with our need to leverage
SneakerNet.

A similar, albeit older and more mature, project to Rucio is iRODS (the integrated rule-
oriented data system; R. Consortium [5]). iRODS, being more mature, integrates nicely with
lots of software (providing a FUSE mount, FTP client integration, and more), and can likely
be a perfect solution for someone looking for fully integrated data management. However,
as it is built on a foundation of rule-based data management, it was discovered to be
incompatible with our need to tightly control the specific transfers taking place.
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2.1.3. Datalad and git-annex:

The git-annex [6] tool is an extension to Git, the version control system, to handle large
quantities of binary data. Due to its extensive use by home and small business users, it
explicitly supports SneakerNet transfers between sites, but is hampered by the fact that it
relies on Git to track files (though not explicitly their contents; git-annex tracks checksums
instead), which can become slow as repository size scales.

Datalad [7] is effectively a frontend for git-annex with a significant feature pool, and is
used extensively in the bioscience community. For projects with small-to-medium size data
needs, Datalad would be an exceptional candidate, but as we expect to need to manage
multiple petabytes of data over a variety of storage needs, it was unfortunately not appro-
priate for the Simons Observatory.

3. The Librarian
After much consideration, the collaboration decided that building an orchestration and
tracking framework on top of Globus was most appropriate. In addition, there was an
existing piece of software used for the Hydrogen Epoch of Reionization Array (HERA) [8],
a radio telescope designed to study the early Universe, called the ‘HERA Librarian’ [9], [10]
that provided some of the abstractions that were required, though it was not suitable for
production use for the much larger Simons Observatory. The HERA Librarian used a signif-
icant number of shell commands over SSH in its underlying architecture, and was designed
to be fully synchronous. This lead to a complete re-write of the Librarian, primarily to
eliminate these deficiencies, but also to migrate the application to a more modern web
framework. There are a few key design concepts that were carried over from the HERA
Librarian:

• There is a distinction drawn between ‘Files’ and ‘Instances’ of files in

the Librarian; a given server may know that ‘File’ exists but not actually have direct access
to a copy of the underlying data.

• Files are immutable, enforced through checksumming, making synchronization

between Librarians uni-directional and much simpler.
• Instances of the Librarian server are free-standing and are loosely-coupled,

meaning that long outages or network downtime do not cause significant issues.

The Librarian¹ is made up of five major pieces:

1. A FastAPI² server that allows access through a REST HTTP API.
2. A database server (postgres³ in production, SQLite⁴ for

development) to track state and provide atomicity.
1. A background task⁵ thread that performs data-intensive operations

like checksumming, local cloning, and scheduling of transfers.
1. A background transfer thread that manages the transfer queue and communicates

with Globus to query status.
1. A Python and associated command-line client for interacting with the API.

¹https://github.com/simonsobs/librarian
²https://fastapi.tiangolo.com
³https://www.postgresql.org
⁴https://www.sqlite.org
⁵https://schedule.readthedocs.io/en/stable/index.html
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Crucially, the background threads can directly access the database, without having to inter-
act with the HTTP server. This reduces the level of ‘CRUD’ (create, read, update, delete) API
code that is required for the project significantly, by allowing (e.g.) locking of database rows
currently being transferred directly, rather than having this be handled through a series
of API calls. These background tasks are scheduled automatically using the lightweight
schedule library.

The Librarian is a specialized tool that excels in reproducing the data and layout of a POSIX-
compatible filesystem on a system with downstream nodes in a loosely-coupled manner, all
whilst maintaining tight control on how data is transferred. The Librarian is open source
and available through GitHub⁶, under the BSD-2-Clause license.

3.1. Technology Choices

For this project, it was crucial that we used the Python language, as this is the lingua
franca of the collaboration; all members have at least some knowledge of Python. No
other language comes close (by a significant margin), and all analysis tools use Python. In
addition, Globus provide a complete source development kit for Python⁷. As our analysis
tools will eventually communicate with the Librarian, and its REST API, it also made sense
to employ pydantic⁸ to develop the communication schema. By using pydantic, we could
ensure that responses and requests were serialized and de-serialized by the exact same
models, reducing both development time and errors significantly. With pydantic models as
our base data structure, it was natural to choose FastAPI for the web server component.

In an ideal case, we would have used SQLModel to further reduce code duplication in the
database layer. However, at the outset of the project, SQLModel⁹ was still in very early devel-
opment, and as such it made sense to use SQLAlchemy¹⁰ as our object-relational mapping
(ORM) to translate database operations to object manipulation.

3.2. Service Layout

The Librarian service is relatively simple; it allows for the ingestion of ‘files’ (which can
themselves be directories containing many files) into a unified namespace, and this name-
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Main Store

ChecksumStaging Area

Source Librarian Destination Librarian

upl
oadsta

ge

com
ple
te

Main Store
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clone
stage

complete
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Figure 2.  Showing data ingest (green) and cloning between Librarian instances (orange). Data flows from
the experiment, through a staging area, and to a main store, before being picked up by the background
task (clocks) and copied by Globus in the background to the remote staging area. On the remote end, once
the data is marked as being staged, the background task picks it up, checksums it, and it is marked as
stored. More information on this process is available in the main text.

⁶https://github.com/simonsobs/librarian
⁷https://globus-sdk-python.readthedocs.io/en/stable/index.html
⁸https://docs.pydantic.dev/latest/
⁹https://sqlmodel.tiangolo.com
¹⁰https://www.sqlalchemy.org
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space can be synchronised with other sites using Globus. In this section we will give a brief
overview of the key abstractions at place and the data flow within the application. This
process is summarised in Figure 2.

In contrast to many other tools, and to the ‘HERA Librarian’ which preceeded the Librarian,
files carry minimal science metadata along with them through the system. We found that
metadata systems attached to data flow and management systems often lacked necessary
features and caused significant complications (such as needing frequent database migra-
tions) when coupled. As such, we chose to explicitly delegate metadata management to
other subsystems within the project, focusing only on file transfers.

3.2.1. User and Librarian Management:

During the initial setup of the system, an administrator user is provisioned to facilitate
further management tasks. This primary administrator has the ability to create additional
user accounts through the librarian command-line tool.

Both ‘users’ (i.e. those interacting with the system to ingest data) and ‘Librarians’ (other
copies of the application running on other systems) need accounts. These accounts can be
configured with different levels of permissions to suit various needs. Specifically, accounts
can be granted full administrator privileges, read and append only privileges, or callback-
only privileges. Callback-only privalages are crucial for remote sites like telescopes, as
they ensure that downstream Librarians only have extremely limited access to both the
underlying data and its associated metadata. To ensure security, user passwords are salted
and hashed in the database using the Argon2¹¹ algorithm. The API employs HTTP Basic
Authentication for user verification and access control.

3.2.2. Storage Management:

In the Librarian system, storage is abstracted into entities known as ‘stores’. These stores
are provisioned during the setup process and can be migrated with a server restart. Each
store comprises two components: a staging area for ingested files and a main store area,
which has a global namespace for permanently storing data. While stores can have any
underlying structure, they must provide methods for both ingestion and egress of data. In
all current use cases, we employ a ‘local store’, which is a thin wrapper around a POSIX
filesystem.

Stores provide two methods for data ingestion: transfer managers and async transfer man-
agers. Transfer managers are synchronous, and for the ‘local store’, this involves a simple
local file copy. Async transfer managers, on the other hand, are asynchronous and are
used for inter-Librarian transfers, typically employing Globus for this purpose. Individual
storage items are referred to as ‘files’, which can denote either individual files or directories.

Stores on the same device log all the ‘instances’ of ‘files’ they contain in the database.
Additionally, all files can have ‘remote instances’, which are known instances of files located
on another Librarian.

3.2.3. Data Ingestion:

Data ingestion follows a systematic process using accounts that have read and append
privileges. Initially, a request to upload is made to the Librarian web server prompting it
to create a temporary UUID-named directory in the staging area. Simultaneously, the client
computes a checksum for the file. The server then provides this UUID and a set of transfer
managers to the client.

¹¹https://pypi.org/project/argon2-cffi/

July 10, 2024 242

https://pypi.org/project/argon2-cffi/


Making Research Data Flow With Python  | Borrow et al., 2024

Next, the client selects the most appropriate transfer manager to copy the file to the staging
area. Once the file transfer is complete, the client informs the server of the completion. The
server then verifies that the checksum matches the one provided in the upload request. If
the checksums are consistent, the server ingests the file into the storage area.

From the client’s perspective, the upload is extremely simple:

from hera_librarian import LibrarianClient
from hera_librarian.settings import client_settings
from pathlib import Path

client_info = client_settings.connections.get(
    "my_librarian_name"
)

client = LibrarianClient.from_info(client_info)

client.upload(
    Path("name_of_a_file_on_disk.txt"),
    Path("/hello/world/this/is/a/file.txt")
)

This then leads to a synchronous uploading of the local file to the global namespace, with
upload returning once this is complete and, crucially, the upload is verified (via a checksum)
by the server. For most applications, this fire-and-forget technique is all that is required;
if upload returns successfully, the file is guaranteed to have been correctly uploaded to the
server and is ready for use and export.

3.2.4. Data Cloning:

Data can be cloned in two main ways: locally and remotely. Local cloning involves making
a copy to a different store on the same Librarian, which is often used for SneakerNet. This
process is straightforward and handled by a single task that creates a copy on the second
device and updates the database.

Remote cloning, on the other hand, is a more complex, multi-stage process. Initially, files
without remote instances on the target Librarian are collated into a list. Outgoing transfers
are then created in the database to track progress. These transfers are grouped into batches
of 128 to 1024 files to be packaged in a single Globus transfer, due to the limitation that there
can only be 100 listed Globus transfers.

A request is made to the destination Librarian to batch stage clones of these files, creating
a UUID directory for each. The batch transfer is placed in the queue on the local Librarian.
The transfer thread picks up this batch and sends it using Globus, periodically polling for
status updates on the transfer. Once the transfer is complete, the source Librarian notifies
the destination Librarian that the files are staged. The ‘receive clone’ background task on the
destination Librarian picks up the staged files and verifies them against known checksums.
Once verified, the files are placed in the main store, and a callback is generated to the source
Librarian to complete the transfer and register a new remote instance.

3.2.5. Data Access:

Data can be accessed through the Librarian, by querying it for the location of individual
instances of a file. However, because our stores generally just wrap the POSIX filesystem,
users typically already know a-priori where the files that they need to access are, through
the use of other science product databases. As such, data access is generally as simple as
opening the file; it is where users expect it to be.
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Figure 3.  Showing the SneakerNet flow between two Librarian instances. The sneaker drive is physically
moved between computing sites, alongside a manifest of all files on the drive, to complete transfers in
large batches.

3.3. Data Down the Mountain

In the specific case of an observatory, there is an additional challenge here: lines repre-
senting data flows in Figure 2 no longer simply show bytes sent over HTTP connections to
highly available services, but instead represent potentially interruptible inter-continental
data movement. In the specific case of the Simons Observatory, the main data flow from
the telescope (which is at 5000 meters above sea level in the Atacama Desert) to the main
computing center (NERSC, a national facility on the west coast of the U.S.) is fraught with
challenges.

The main internet connection from the telescope to the nearest town was, for a long time, a
low-bandwidth radio link. This has now been (thankfully) replaced with a high throughput
fiber connection, but given that this link may go down at any time due to the remote
placement of the site (and no backup), another way to offload the data is required. The
observatory produces around 20 TB of data a week, which is much more than the 50 MBit/
s radio link can transfer; either way, that bandwidth is required for other uses. This neces-
sitates a more primitive solution: so-called ‘SneakerNet’ transfers, where data is carried by
hand on physical media.

SneakerNet transfers are supported natively by the Librarian, and occur through the
following steps (as shown in Figure 3):

• A new store is provisioned that refers to the mounted drive that will be

carried in the process.
• A local clone background task catches up on missing files to this drive and,

as new files come in, copies them too.
• Once full, the server sends an alert (implemented using Slack notifications)

to administrators.
• Administrators use the command-line Librarian tools to generate a ‘manifest’

of all files on the device: their checksums, names, etc.
• The drive is hand-carried to the destination, and ingested.
• The Librarian command-line tools are again used to ingest the manifest and

copied files.
• As the files are ingested, HTTP callbacks are made to the source Librarian to

convert the local ‘instance’ rows on the sneaker drive to ‘remote instance’ rows for the
destination Librarian.
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• The drive is re-formatted and carried back.

This is an unusual process, but comes in extremely handy in bandwidth constrained,
remote, environments.

3.4. Testing

Testing complex data flows like those represented in the Librarian is a notoriously difficult
task. For instance, testing the components that make up the SneakerNet workflow means
being able to test two interacting web-servers, each backed by a database, with several
additional threads running in the background. To aid with this goal, we make heavy use of
dependency injection and integration testing, alongside more traditional unit testing.

For services that cannot be ‘easily’ replicated, like Globus, we make sure to always use
dependency injection. Dependency injection is a technique where downstream functions
and objects ‘receive’ the things that they require as arguments or parameters. One signif-
icant example where this is used in the Librarian is the transfer managers: by having the
server tell the client how it can move data, you can return appropriate managers for testing.
Instead of using a Globus transfer (which requires setting up an external server, and regis-
tering it with Globus), one can instead return a transfer manager that simply wraps rsync or
a local copy instead, and test all the same code paths except the one line that actually moves
the data. The component that performs the Globus transfer is then tested separately in a
more appropriate environment, ensuring that it conforms to the exact same specification
as the local copy manager. Another example is our database: thanks to SQLAlchemy, and
appropriate design patterns, we can very easily swap out our production postgres database
for SQLite during development, enabling much more simple testing patterns.

In an attempt to avoid ‘dependency hell’, we have developed a testing platform that heavily
leverages pytest-xprocess¹² and pytest fixtures. Using this tool, one can create a real, live,
running Librarian server in a separate process. This is used to test the interaction between
client and server, and for end-to-end tests of the SneakerNet and inter-Librarian cloning
process. Because this server is running locally, it makes it possible to directly query the
database for testing, which we have found to be invaluable. The only drawback to this
approach is that it is not possible to get test coverage for the lines that are performed inside
the xprocess fork.

3.5. Deployment Details

As we have made a relatively straightforward selection of technologies, and the fact that
the Librarian is a small application (less than 10′000 lines), deployment is a simple process.
In addition, it makes it straightforward to explain the code paths that are taken by the
Librarian.

Currently, we deploy Librarian using Docker. We require one container for the FastAPI
server, and one for postgres, which are usually linked using helm charts (at NERSC) or
docker compose (on other systems). We provide access to the database for Grafana dash-
boards, and have Slack integrations for both logging and notifications.

The focus on simplicity that we have made for the Librarian has made deployment simple;
system administrators within the academic community are very familiar with Globus, and
have been happy to assist with deployments of Librarian orchestration framework.

¹²https://pytest-xprocess.readthedocs.io/en/latest/
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4. Conclusions
In this paper, we addressed the significant challenges faced by large academic collabora-
tions in managing and transferring massive datasets across distributed sites. We evaluated
existing data management tools such as Globus Flows, Rucio, iRODS, and Datalad, identi-
fying their limitations in terms of automation, complexity, and compatibility with academic
workflows.

Our solution, the Librarian was developed to meet these specific needs. By integrating with
Globus, Librarian enables efficient, asynchronous data transfers. The system also supports
SneakerNet, which is essential for environments with limited or intermittent connectivity
like our observatory, facilitating physical data transfers through portable storage.

The use of widely adopted technologies such as Python, FastAPI, and SQLAlchemy ensures
that Librarian is robust, scalable, and user-friendly. Its design aligns well with the decen-
tralized and diverse infrastructure typical of academic projects, providing a practical and
efficient method for handling the immense data flows inherent in modern ‘big science’
endeavors.

Librarian has demonstrated its effectiveness through its deployment at the Simons Obser-
vatory, highlighting its potential as a versatile and reliable data management solution for
large-scale scientific collaborations. We provide Librarian as free, open source, software to
the community.
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Abstract

The open-source Jupyter project has fostered a robust ecosystem around notebook-based
computing, resulting in diverse Jupyter-compatible platforms (e.g., JupyterLab, Google Colab,
VS Code). Jupyter Widgets extend these environments with custom visualizations and inter-
active elements that communicate directly with user code and data. While this bidirectional
communication makes the widget system powerful, its architecture is currently tightly cou-
pled to platforms. As a result, widgets are complex and error-prone to author and distribute,
limiting the potential of the wider widget ecosystem. Here we describe the motivation and
approach behind the anywidget project, a specification and toolset for portable and reusable
web-based widgets in interactive computing environments. It ensures cross-platform com-
patibility by using the web browser’s built-in module system to load these modules from the
notebook kernel. This design simplifies widget authorship and distribution, enables rapid
prototyping, and lowers the barrier to entry for newcomers. Anywidget is compatible with
not just Jupyter-compatible platforms but any web-based notebook platform or authoring
environment and is already adopted by other projects. Its adoption has sparked a widget
renaissance, improving reusability, interoperability, and making interactive computing more
accessible.

Keywords Computational Notebooks, Jupyter, Widgets, Python, JavaScript, Data
Visualization, Interactive Computing

1. Introduction
Computational notebooks combine live code, equations, prose, visualizations, and other
media within a single environment. The Jupyter project [1], [2] has been instrumental the
success of notebooks, which have become the tool of choice for interactive computing in
data science, research, and education. Key to Jupyter’s widespread adoption is its modular
architecture and standardization of interacting components, which have fostered an exten0
sive ecosystem of tools that reuse these elements. For example, the programs responsible
for executing code written in notebooks, called kernels, can be implemented by following
the Jupyter Messaging Protocol [3]. This design allows users to install kernels for various
different languages and types of computation. Similarly, Jupyter’s open0standard notebook
format (.ipynb) ensures that notebooks can be shared and interpreted across different
platforms [4].

Jupyter’s modular architecture has also supported innovation in notebook front ends —
the user interfaces (UIs) for editing and executing code, as well as inspecting kernel outputs.
The success of the classic Jupyter Notebook [1] spurred the development of several similar
Jupyter0compatible platforms (JCPs), such as JupyterLab, Google Colab, and Visual Studio
Code. These platforms provide unique UIs and editing features while reusing Jupyter’s other
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standardized components. This interoperability allows users to choose the platform that
best suits their needs, while retaining a familiar interactive computing experience with the
ability to share notebooks. Furthermore, the separation of computation from UI offers users
a wide selection of both front ends and kernels. However, the proliferation of JCPs has led to
significant challenges for Jupyter Widgets, a key component of interactive user interfaces
in Jupyter.

Jupyter Widgets extend notebook outputs with interactive views and controls for objects
residing in the kernel [5]. For instance, the ipywidgets library, besides defining the
widget communication protocol, provides basic form elements like buttons, sliders, and
dropdowns to adjust individual variables. Other community projects offer interactive visu0
alizations for domain0specific needs, such as 3D volume rendering (ipyvolume), biological
data exploration [6], [7], [8], and mapping (ipyleaflet, pydeck, lonboard), which users can
update by executing other code cells or interact with in the UI to update properties in the
kernel.

Widgets are unique among Jupyter components in that they consist of two separate
programs — kernel0side code and front0end code — that communicate directly via custom
messages Figure 1, rather than through a mediating Jupyter process. With widgets, commu0
nication is bidirectional: a kernel action (e.g., the execution of a notebook cell) can update
the UI, such as causing a slider to move, while a user interaction (e.g., dragging a slider),
can drive changes in the kernel, like updating a variable. This two0way communication
distinguishes widgets from other interactive elements in notebook outputs, such as HTML
displays, which cannot communicate back and forth with the kernel.

Widgets are intended to be pluggable components, similar to kernels. However, only the
protocol for communication between kernel and front0end widget code, known as the
Jupyter Widgets Message Protocol, is standardized. Critical components, such as the distri0
bution format for front0end modules and methods for discovering, loading, and executing
these modules, remain unspecified. As a result, JCPs have adopted diverse third0party
module formats, installation procedures, and execution models to support widgets. These
inconsistencies place the onus on widget authors to ensure cross0JCP compatibility.

Note
In this paper, we define a Jupyter Widget as consisting of a pair of programs: kernel0
side and front0end, which communicate via the Jupyter Widget Message Protocol. While
Python0only widget classes exist, which wrap other Jupyter Widgets as dependencies,

Figure 1.  Jupyter Widget conceptual architecture.
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this paper focuses on those with dedicated front0end code, where the challenges
described apply.

JCPs load front0end widget code by searching in various external sources, such as local
file systems or Content Distribution Networks (CDNs) while kernel0side (Python) code loads
and runs in the kernel Figure  2. These access patterns split the distribution of custom
widgets between Python and JavaScript package registries, complicating releases and
requiring widget authors to understand both packaging ecosystems. This division creates
challenges, especially in shared, multi0user environments like JupyterHub. Since kernels
cannot host static assets, users cannot independently install widgets or manage versions.
Instead, widget front0end code must be pre0installed on the Jupyter webserver, typically by
an administrator. Consequently, users are restricted to administrator0installed widgets and
versions, unable to upgrade or add new ones independently.

These limitations make widget development complex and time0consuming, demanding
expertise in multiple domains. They make user experiences across JCPs frustrating and
unreliable. The high barrier to entry discourages new developers and domain scientists
from contributing to widgets, limiting growth and diversity in the ecosystem. This leaves
a small group of authors responsible for adapting their code for cross0JCP compatibility,
hindering widget reliability and maintainability.

2. Methodology
The anywidget project simplifies the authoring, sharing, and distribution of Jupyter Wid0
gets by (i) introducing a standard for widget front0end code based on the web browser’s

Figure 2.  Without anywidget, to ensure compatibility, authors must transform their JavaScript code for
each JCP. Since JCPs load front-end widget code from a webserver rather than the kernel, widget front-
end and Python code must also be packaged separately and installed consistently on any given platform.
Missing puzzle pieces represent missing front-end extensions for specific target JCPs. The misshapen blue
piece represents an incorrectly built or broken extension. Both situations contribute to fragmented JCP
support.
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Figure 3.  With anywidget, developers author a single, standard portable ES module (AFM), which
is loaded from the kernel and executed using the browser’s native module system. For existing JCPs,
anywidget provides a front-end adapter to load and execute these standardized modules, while new
platforms can add native AFM support directly. Widget kernel-side code and AFM can be run directly from
within notebooks, from source files, or distributed as single Python packages. With anywidget, each JCP
consumes the same AFM, and widget authors can compose an AFM directly or target AFM through a build
step to take advantage of advanced tools.

native module system, (ii) loading these modules from the kernel, and (iii) providing the
necessary “glue code” to adapt existing JCPs to load and execute these components Figure 3.
This separation of concerns allows widget authors to write portable code that runs consis0
tently across JCPs without manual installation steps.

Packaging custom Jupyter Widgets is complex due to the need to adapt JavaScript source
code for various module systems used by JCPs. Initially, JavaScript lacked a built0in module
system, leading JCPs to adopt diverse third0party solutions. Without a standardized widget
front0end format, authors transform their code for each JCP. In the context of Jupyter
Notebook and JupyterLab, this problem is described in the Jupyter Widgets documentation
[9] as follows:

Because the API of any given widget must exist in the kernel, the kernel is the natural
place for widgets to be installed. However, kernels, as of now, don’t host static assets.
Instead, static assets are hosted by the webserver, which is the entity that sits between
the kernel and the front0end. This is a problem because it means widgets have compo0
nents that need to be installed both in the webserver and the kernel. The kernel
components are easy to install, because you can rely on the language’s built0in tools.
The static assets for the webserver complicate things, because an extra step is required
to let the webserver know where the assets are.

ECMAScript (ES) modules, introduced in 2015, are an official standard for packaging
JavaScript code for reuse [10]. While most JCPs predate its standardization, ES modules
are universally supported by browsers today. By adopting ES modules, anywidget is able
to use the browser’s native import mechanism to load and execute widget front0end code
from the Jupyter kernel, thereby bypassing those used by JCPs and eliminating third0party
dependencies. This approach not only overcomes many development challenges, but also
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export default {
  initialize({ model }) {
    // Set up shared state or event handlers.
    return () => {
      // Optional: Called when the widget is destroyed.
    }
  },
  render({ model, el }) {
    // Render the widget's view into the el HTMLElement.
    return () => {
      // Optional: Called when the view is destroyed.
    }
  }
}

Figure 4.  An anywidget front-end module (AFM) with initialization and rendering lifecycle methods.
For familiarity, AFM methods use naming conventions from traditional Jupyter Widgets; however, AFM
narrows down the APIs provided to these methods, making it easier to load and execute AFMs in new
environments. Methods: The initialize and render methods correspond to different stages in the widget’s
lifecycle. During model initialization, a front-end model is created and synchronized with the kernel. In
the rendering stage, each notebook cell displaying a widget object renders an independent view based on
the synced model state. Arguments: The interface of model is restricted to a minimal set of methods for
communicating with the kernel (retrieving, updating, and responding to value changes). The el argument
is a standard web HTMLElement.

eliminates installation procedures for front0end code. Consequently, developers can proto0
type and share widgets directly within notebooks, making them more reliable and easier
to use.

An anywidget front0end module (AFM) is an ES module with a default export defining
widget behavior. This export includes lifecycle methods, or “hooks,” for managing a widget’s
lifecycle stages: initialization, rendering, and destruction Figure 4. AFM lifecycle methods
receive the interfaces required for kernel communication and notebook output modifica0
tions as arguments, rather than creating them internally or relying on global variables
provided by the JCP. This practice, known as dependency injection [11], improves AFM
portability by making integration interfaces explicit. New runtimes can support AFMs by
implementing the required APIs, and existing JCPs can refactor their internals without
breaking existing (any)widgets. For projects that want to take advantage of advanced front0
end tooling, anywidget also provides authoring utilities to write AFMs such as “bridge”
libraries for popular web frameworks [12].

Widget authorship is particularly challenging due to the need to integrate front0end code
that communicates with kernel code in a heterogeneous set of environments. The anywid0
get project addresses these challenges by focusing on the standardization, development,
and distribution of widget front0end modules, including the associated API to communicate
with a computational kernel. The anywidget Python package serves as an adapter library
that turns each JCP into an AFM0compatible host environment. Finally, the anywidget
project provides additional tooling to help developers evolve their prototypes into mature
packages [12].

An additional goal for an interactive computing paradigm like widgets is composability. For
example, ipywidgets provides utilities to link widgets together or lay out grids of widgets
on the page. These primitives allow widgets to derive from others, enabling reuse of front0
end and kernel integrations in new ways. Importantly, Jupyter Widgets authored with
the anywidget Python package extend from ipywidgets, making them interoperable with
core ipywidgets and traditional custom widgets. By aligning with ipywidgets, anywidget
promotes composability and prevents fragmentation of the ecosystem.
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3. Features
Adhering to predictable standards benefits both developers and end users in many other
ways beyond JCP interoperability, such as…

3.1. Web Over Libraries

Front0end libraries change rapidly and often introduce breaking changes, whereas the web
platform remains more backward0compatible. Traditional Jupyter Widgets require exten0
sions from UI libraries provided by JCPs, coupling widget implementations to third0party
frameworks. In contrast, AFM defines a minimal set of essential interfaces focused on (1)
communicating with the kernel and (2) modifying notebook output cells, without dictating
models for state or UI. It allows widgets to be defined without dependencies, reducing
boilerplate and preventing lock0in. Authors may still use third0party JavaScript libraries or
tooling, but these are no longer necessary for JCP compatibility, publishing, or user instal0
lation.

3.2. Rapid Iteration

The web ecosystem’s adoption of ES modules has led to new technologies that enhance
developer experience and enable rapid prototyping. One such innovation is hot module
replacement (HMR), a method that uses the browser’s module graph to dynamically update
applications without reloading the page or losing state. Since traditional Jupyter Widgets
rely on legacy module systems, they cannot benefit from HMR and instead require full page
clearance, reload, and re0execution to see changes during development. By contrast, any0
widget is able to provide opt0in HMR, implemented through the Jupyter messaging protocol,
in order to support live development of custom widgets without any front0end tooling. For
example, adjusting a widget’s appearance, such as a chart’s color scheme, updates the view
instantly without re0executing cells or refreshing the page.

3.3. Progressive Development

Anywidget makes it possible to prototype widgets directly within a notebook since all widget
code is loaded from the kernel. Custom widgets can start as a few code cells and transition to
separate files, gradually evolving into standalone scripts or packages – just like kernel0side
programs Figure 3. In contrast, developing traditional Jupyter Widgets is a cumbersome
process limited to the Jupyter Notebook and JupyterLab platforms. It involves using a
project generator [13], [14] to bootstrap a project with over 50 files, creating and installing
a local Python package, bundling JavaScript code, and manually linking build outputs to
install extensions [15]. By removing these barriers, anywidget accelerates development
and allows prototypes to grow into robust tools over time. In fact, as of January 2024, the
JavaScript cookiecutter [13] project has been deprecated and directs users to use anywidget
instead.

3.4. Simplified Publishing

Serving AFMs and other static assets from the kernel removes the need to publish widget
kernel0side and front0end code separately and coordinate their releases. For example,
many JCPs retrieve traditional widget Javascript code from npm, misusing the registry for
distributing specialized programs rather than reusable JavaScript modules. Instead, with
anywidget, developers can publish a widget (kernel0side module, AFM, and stylesheets) as
a unified package to the distribution channels relevant to the kernel language, such as the
Python Package Index. Consolidating the distribution process this way greatly simplifies
publishing and discovery.
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4. Impact and Outlook
Anywidget fills in the specification gaps for Jupyter Widgets by embracing open standards
and carefully separating developer concerns. It defines an API for authoring portable
and reusable widget components that decouples widget authorship from JCPs, resulting
in multiple downstream benefits. First, anywidget—not widget authors—ensures compat0
ibility and interoperability across existing JCPs, and authors can focus on important
features rather than wrestle with build configuration and tooling. Anywidget’s adapter
layer simply loads and executes standardized front0end modules, meaning that the compat0
ibility afforded does not introduce overhead to the runtime performance of a widget itself.
A widget authored with anywidget has the same performance characteristics as a widget
tediously (and correctly) authored using the traditional Jupyter Widgets system. Second,
by circumventing bespoke JCP import systems and loading web0standard ES modules from
the kernel, anywidget does away with manual installation steps and delivers an improved
developer experience during widget authorship. Third, anywidget unifies and simplifies
widget distribution. Widgets can be prototyped and shared as notebooks, or mature into pip0
installable packages and distributed like other tools in the Python data science ecosystem.
End users benefit from standardization because widgets are easy to install and behave
consistently across platforms.

Since its release, anywidget has led to a proliferation of widgets and a more diverse widget
ecosystem Figure 5. New widgets range from educational tools for experimenting with toy
datasets (e.g., DrawData) to high0performance data visualization libraries (e.g., Lonboard,
Jupyter0Scatter [16], Mosaic [17]) and research projects enhancing notebook interactivity
(e.g., Persist [18], cev [19]). Many of these tools use anywidget’s binary data transport to
enable efficient interactive visualization with minimal overhead by avoiding JSON serial0
ization. Existing widget projects have also migrated to anywidget (e.g., higlass0python,
ipyaladin) and other libraries have introduced or refactored existing widget functionality to
use anywidget (e.g., Altair [20]) due to the simplified distribution and authoring capabilities.

Figure 5.  Custom Jupyter Widgets per year as of September 2, 2024. Projects are tracked in a semi-
automated process, combining daily code searches against GitHub with manual verification, at https://
github.com/manzt/anywidget-usage. See repository for details and contribution guidelines.
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The portable widget standard also extends the anywidget ecosystem to platforms beyond
Jupyter. Popular web frameworks and dashboarding libraries such as Voila, Panel, Shiny
for Python, and Solara support Jupyter Widgets, and therefore also allow users to embed
anywidgets in standalone web applications. Efforts are underway to add more specialized,
built0in support for AFM as well. For example, marimo, a new reactive notebook for Python,
is standardizing its third0party plugin API on AFM, allowing anywidgets to run natively
without additional “glue code.” Developers of the Panel web0application framework are
also exploring deeper integration with AFM to enable reuse with their kernel0side reactivity
systems.

AFM’s standardization of widget front0end code extends reusability beyond the Python
ecosystem. Its API structure is intentionally agnostic to backend processing, enabling cre0
ative and dynamic ways of hosting AFM0based widgets. Many simple widgets can function
without any compute backend, while more complex ones can be upgraded with a compu0
tational backend when necessary. This flexibility allows for innovative hosting solutions
across diverse platforms, from fully static web pages to full0stack web applications. By
decoupling front0end interactivity from backend complexity, AFM empowers developers
to create scalable, platform0independent scientific visualizations and tools, adaptable to a
wide range of computational requirements and user scenarios.

A current limitation of anywidget is that using relative file imports for local dependencies
requires bundling into a single ES module, which introduces a build step and prevents
shipping AFM source code directly. This build step can be avoided by using a single file and
loading third0party dependencies via URLs, though larger projects may still benefit from
bundling. Notably, traditional widgets always require a build step and mandate using a
specific bundler (Webpack) with a bespoke multi0JCP configuration. In contrast, anywidget
makes bundling optional and targets a single standard ES module, which can be produced
easily from a variety of bundlers. Future browser support for importmaps may enable
local dependencies without bundling, simplifying anywidget development further as web
standards evolve.

Tools for data visualization and interactivity have greater impact when compatible with
more platforms, but achieving compatibility involves trade0offs [21]. The full capabilities of
the widget system, such as bidirectional communication, are often inaccessible to authors
due to development difficulty and maintenance efforts. Adopting standards can minimize
these impediments, enabling both broad compatibility and advanced capabilities for users.
A recent article enumerates these challenges and advocates for standardized solutions to
democratize the creation of notebook visualization tools across notebook platforms [21].
Anywidget addresses this by introducing a standard that removes friction in widget devel0
opment and sharing, making authorship practical and accessible.
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Abstract

In recent years, WebAssembly (Wasm) has emerged as a widely-supported technology that
offers high performance, compact binary size, support for multiple languages, hardware
independence, security, and universal platform support, enabling developers to bring near-
native speeds and portability to applications for the web and beyond. ITK-Wasm brings
WebAssembly’s capabilities to scientific computing by combining the Insight Toolkit (ITK) and
WebAssembly to enable high-performance spatial analysis across programming languages
and hardware architectures.

In the scientific Python ecosystem, ITK-Wasm packages work in a web browser via Pyodide
but also in system-level environments through the WebAssembly System Interface (WASI).
ITK-Wasm bridges WebAssembly with scientific Python through simple, fundamental Python
and NumPy-based data structures and Pythonic function interfaces. These interfaces can be
accelerated through graphics processing units (GPU) or neural processing unit (NPU) imple-
mentations when available.

Beyond Python, ITK-Wasm’s integration of the WebAssembly Component Model launches
scientific computing into a new world of interoperability, enabling the creation of accessible
and sustainable multi-language projects that are easily distributed anywhere.

Keywords reproducibility, sustainability, accessibility, interoperability, numpy, polyglot,
spatial computing, visualization, imaging, meshes, pointsets, itk, webassembly, wasm

1. Introduction

1.1. Motivation

In the quest for enhanced interoperability and sustainability in scientific computing,
WebAssembly (Wasm) emerges as a transformative technology. Wasm offers a universal,
efficient compilation target, enabling high-performance computing across varied program-
ming languages and hardware architectures [1], [2], [3]. This innovation is pivotal for
scientific research, where analytical interoperability, tool sustainability, and computational
efficiency are paramount. Wasm’s journey began with asm.js and evolved through Wasm
and the WebAssembly System Interface (WASI).

1.2. Brief history of Wasm

Asm.js was introduced by Alon Zakai via the Emscripten toolchain as a subset of JavaScript
designed for high performance [4]. It allowed developers to write code in languages like
C and C++, compile it to asm.js, and run it in the browser with near-native performance.
Asm.js achieved this by using a statically-typed subset of JavaScript that enabled optimiza-
tions by the JavaScript engine.

The predecessor to ITK-Wasm, ITK.js, supported compilation of C/C++ code into asm.js to
enable reproducible, sustainable scientific computing in a web browser. An illustrative
ITK.js application are interactive figures to replicate results from an open science article
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Figure 1.  Open science interactive figures built with ITK.js, the predecessor to ITK-Wasm [6]. The sustain-
ability and accessibility of this interactive open science figure are remarkable, thanks to the utilization of
open web technologies. These technologies, based on open standards, ensure compatibility across different
systems and long-term support. This web application has continued to function flawlessly for over nine
years without any maintenance, demonstrating its resilience and sustainability. It is hosted for free, with
computations running directly on the reader’s system, eliminating the need for server-side resources. The
application requires zero installation and can be accessed with just a few clicks, allowing users to easily
reproduce results or apply the technique to their own data.

on an imaging denoising technique called anisotropic non-linear diffusion [5]. Results on a
simple webpage, hosted for free on GitHub Pages, are dynamically generated by the reader’s
web browser, using the same code and data presented in the article. Presets load input data
and set analysis parameters to dynamically reproduce the article’s figures. Additionally,
readers can modify parameters to observe their effects or run the algorithm on their own
image data.

The key performance improvement with asm.js was its ability to utilize the JavaScript
engine’s just-in-time (JIT) compilation to execute code faster than traditional JavaScript.
However, asm.js had limitations, including verbose code and the overhead of JavaScript’s
garbage collection and dynamic typing.

WebAssembly emerged from the limitations of asm.js. Announced in 2015 and reaching its
initial MVP (Minimum Viable Product) in 2017, Wasm provides a compact binary format
that could be executed at near-native speed [3], [7]. This innovation marked a significant
leap in web performance, enabling complex applications to run efficiently in the browser.
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Key features of Wasm include [7]:

Security

• Safe to execute
• Maintains the sandboxing paradigms of web browsers

Portability

• Language-, hardware-, and platform-independent
• Deterministic and easy to reason about
• Simple interoperability with the Web platform

Speed

• Fast to execute
• Maximally compact
• Easy to decode, validate and compile
• Easy to generate for producers
• Streamable and parallelizable

The WebAssembly System Interface (WASI), introduced by the WebAssembly Community
Group, extends Wasm’s capabilities beyond the browser [8]. WASI provides a standardized
system interface for WebAssembly, enabling it to interact with the underlying operating
system. This development was crucial for running Wasm in desktop, server, and other non-
browser environments.

Key features of WASI include:

• File system access
• Network access
• A modular architecture

With WASI, WebAssembly can be used to develop portable, high-performance applications
that run anywhere. A plethora of WASI runtimes are available that vary in their focus, such
as embedding in programming languages, specialized hardware such as field-programma-
ble gate arrays (FPGAs), embedded devices, security, speed, or high performance computing
(HPC) environments [9], [10], [11].

1.3. Wasm and scientific computing

Throughout its evolution, WebAssembly has focused on performance improvements. Some
notable advancements relevant to scientific computing include:

• Bulk memory operations: efficient copy and movement of data in memory
• SIMD support: Single Instruction, Multiple Data (SIMD) capabilities, allowing Wasm to

perform parallel operations on multiple data points simultaneously with specialized
instruction support available on modern CPUs

• Multithreading support: support for operating system threads and atomics for CPU
parallelism

The evolution of WebAssembly from asm.js to Wasm to WASI has been marked by contin-
uous improvements in performance, interoperability, and support for a wide range of
programming languages and deployment environments. This journey has transformed We-
bAssembly into a versatile and powerful technology, capable of running high-performance
applications anywhere, from the browser to the cloud.

Wasm has been embraced in commercial and industrial contexts for web applications,
game development, edge computing, and server-side computing. However, its adoption in
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scientific computing has been more limited. This is partly due to the established reliance
specialized software stacks in the scientific community. Additionally, the integration of
Wasm into existing scientific workflows requires overcoming challenges related to data
interoperability, toolchain compatibility, and the inertia of entrenched computational prac-
tices.

Enter ITK-Wasm, a pioneering resource that marries the Insight Toolkit (ITK) and open
standards to seemlessly integrate Wasm for high-performance scientific spatial analysis
or visualization[12], [13], [14]. ITK-Wasm supports both Emscripten-based Wasm in a web
browser or WASI-SDK Wasm for system-level environments. ITK-Wasm is crafted to adhere
to Wasm community standards, thereby facilitating the creation of Wasm modules that are
simple, performant, portable, modular, and interoperable.

ITK-Wasm provides infrastructure that empowers research software engineers to:

• Build scientific C/C++ codes to Wasm
• Generate idiomatic programming language bindings, packages, and documentation
• Bridge Wasm with

‣ Local filesystems
‣ Canonical scientific programming data interfaces such as NumPy arrays
‣ Traditional scientific file formats with an emphasis on multi-dimensional spatial

data
• Transfer data efficiently in and out of the Wasm runtime
• Support asynchronous and parallel execution of processing pipelines in way that is easy

to understand and implement

2. Methods

2.1. Overview

ITK-Wasm provides powerful, joyful tooling for scientific computation in Wasm through a
number of distinct but related parts.

1. C++ core tooling
2. Build environment Docker images
3. A Node.js CLI to build Wasm, generate language bindings, run tests, and publish

packages
4. Small, language-specific libraries that facilicate idiomatic integration
5. Scientific file format support
6. Artificial intelligence and the semantic web integration

This tooling supports a straightforward programming model that aligns with functional
programming paradigms and leverages Wasm’s simple stack-based virtual machine and
Component Model architecture. All tooling is built around two key concepts:

1. Interface Types: High-level, programming-language types for scientific computing,
derived from Wasm’s low-level types.

2. Processing Pipelines: Functions implemented in Wasm modules that operate on
these interface types.

2.2. C++ core

ITK-Wasm’s C++ core tooling provides:

1. Fundamental numerical methods and multi-dimensional scientific data structures
2. An elegant, modern interface to create processing pipelines
3. A bridge to interoperable web techologies
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4. A bridge to Web3 and traditional desktop computing

These are embodied in the C++ core with:

1. ITK
2. CLI11
3. Glaze
4. libcbor

The Insight Toolkit (ITK) is an open-source, cross-platform library that provides developers
with an extensive suite of software tools based on a proven, spatially-oriented architecture
for processing scientific data in two, three, or more dimensions [M. McCormick, X. Liu, J.
Jomier, C. Marion, and L. Ibanez [13]]. ITK includes fundamental numerical libraries, such
as Eigen. ITK’s C++ template-based architecture inherently helps keep Wasm modules small
while enabling the compiler to add extensive performance optimizations. The itk-wasm
GitHub repository is also an ITK Remote Module, WebAssemblyInterface, that implements
Wasm-interface specific functionality. As an ITK Remote Module, wasm interface capabil-
ities are available in an easily consumed library form. To access wasm interface function-
ality in a build configuration,

find_package(ITK
  COMPONENTS
    WebAssemblyInterface
    # Other desired components
  )
include(${ITK_USE_FILE})

add_executable(a-wasm-pipeline ${srcs})
target_link_libraries(a-wasm-pipeline PUBLIC ${ITK_LIBRARIES})

Glaze provides an elegent C++ JSON interface. This library was integrated as it is not
only extremely fast but also small as a header-only library, which is critical for efficient
WebAssembly deployment. The ability to read and write interface types to files, providing
a bridge to Web3 and traditional desktop computing, is built on libcbor, which is another
tiny footprint library.

Wasm module C++ processing pipelines are written with CLI11′s simple and intuitive argu-
ment parsing interface [15]. A C++ Wasm processing pipeline is defined with the familiar
context of a command line executable. Processing pipelines can be built with native binary
toolchains into usable command line executables, which facilites development and debug-
ging. CLI11 extensions for the interface types and parsing enable an efficient embedding
interface in addition to the command line interface. All modules support an --interface-
json flag that outputs a description of the module’s interface for binding generation.

2.3. Build environment Docker images

Build environment Docker images encapsulate

1. The ITK-Wasm C++ core
2. An Emscripten or WASI toolchain
3. Additional Wasm tools and configurations

These itkwasm/emscripten and itkwasm/wasi Docker images are dockcross images – Docker
images with pre-configured C++ cross-compiling toolchains that enable easy-application,
reproducible builds, and a clean separation of the build environment, source tree, and build
artifacts [16].
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These images include not only the CMake pre-configured toolchains, but pre-built versions
of the ITK-Wasm C++ core. Moreover, Wasm tools for optimization, debugging, system exe-
cution, and testing are bundled. A number of build and system configurations are included
to for optimized and debuggable builds.

2.4. Command line interface (CLI)

An itk-wasm Node.js command line interface (CLI) drives

• Wasm module builds
• Generation of language bindings and language package configurations
• Testing for Wasm binaries

New projects are typically created with the create-itk-wasm CLI:

npx create-itk-wasm

The create-itk-wasm tool, which can be used interactively or programmatically, will generate
C++ code with the required ITK-Wasm CLI11 interfaces, other support configuration files
such as CMake build configuration scripts, a package.json file, language binding generation,
and testing.

2.5. Language-specific libraries and idiomatic bindings

Small, language-specific libraries are used by generated bindings to provide simple, clean,
performant, and idiomatic interfaces in the host languages.

In TypeScript / JavaScript, this is the NPM itk-wasm package and in Python this is the PyPI
itkwasm package.

TypeScript / JavaScript bindings and packages are generated from Emscripten toolchain
builds of ITK-Wasm. TypeScript bindings are generated along with an NPM package.json to
support package builds and deployment. Bindings are generated that support both browser-
based execution and server-side execution in Node.js. Build scripts are provided to build
TypeScript to JavaScript and also generate a demo app with an HTML interface. JavaScript
bindings load Zstandard-compressed versions the Wasm modules on-demand in a web
worker to support progressive and performant execution.

Python packages for new modules are generated for both system execution and web
brower-execution. In the browser, Pyodide-compatible packages provide client-side web
app scripting in Python, including via PyScript, and sustainable, scalable Jupyter deploy-
ments via JupyterLite. At a system level, Linux, macOS, and Windows operating systems are
supported on x86_64 and ARM via wasmtime-py.

2.5.1. Python environment dispatch:

Bindings produce a primary, pip-installable Python package. In browser environments,
this will pull a corresponding Emscripten-enabled Python package. For system Python
distributions, this will bring in a corresponding WASI-enabled Python package. When
GPU-accelerated implementations of functions are available in other packages along with
required hardware and software, simply pip-installing the accelerator package will cause
function calls to invoke accelerated overrides registered with modern package metadata,
Figure 2.
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Figure 2.  Cross-platform, cross-environment support with optional non-Wasm accelerator packages is
made possible by a generated environment dispatch Python package, a WASI-based Python package, and
a Pyodide package. The Pyodide package does not have typical Pyodide-Emscripten ABI limitations due
to the application of principals from the Wasm Component Model.

2.5.2. Browser and system APIs:

While synchronous functions are available in system packages, browser packages provide
asynchronous functions for non-blocking, performant execution in the JavaScript runtime
event loop. These functions are called with modern Python’s async / await support.

For example, to install the itkwasm-compress-stringify package:

System

pip install itkwasm-compress-stringify

Browser

In Pyodide, e.g. the Pyodide REPL or JupyterLite,

import micropip
await micropip.install('itkwasm-compress-stringify')

In the browser, call the async *_async function with the await keyword.

System

from itkwasm_compress_stringify import compress_stringify

data = bytes([33,44,55])
compressed = compress_stringify(data)

Browser
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from itkwasm_compress_stringify import compress_stringify_async

data = bytes([33,44,55])
compressed = await compress_stringify_async(data)

2.6. Traditional file format support

Assistance for handling data serialized in file formats plays a crucial role in enabling
comprehensive analysis using a variety of software tools.

ITK-Wasm offers IO modules designed to interact with various standard scientific image
and mesh file formats. These modules allow for the loading of data into the language-native
interface type bindings.

Scientific image file formats supported include:

• AIM,ISQ
• BioRad
• BMP
• DICOM
• DICOM Series
• ITK HDF5
• JPEG
• GIPL (Guy’s Image Processing Lab)
• LSM
• MetaImage
• MGH
• MINC 2.0
• MRC
• NIfTI
• NRRD
• VTK legacy file format for images
• Varian FDF

Scientific mesh file formats supported include:

• BYU
• FreeSurfer surface, binary and ASCII
• OFF
• STL
• SWC Neuron Morphology
• OBJ
• VTK legacy file format for vtkPolyData

In addition to supporting external file formats, ITK-Wasm also introduces its own file
formats. These ITK-Wasm file formats are optimized and offer a direct correspondence to
spatial interface types, utilizing a straightforward JSON + binary array buffer format.

Execution pipeline WebAssembly modules only support ITK-Wasm formats by default – this
ensures that size of the WebAssembly pipeline binary is minimal. When using ITK-Wasm
pipelines on with the command line interface, Wasm modules from the image-io and mesh-
io packages can transform data in other formats into the format supported by all ITK-Wasm
modules.

ITK-Wasm formats can be output in a directory or bundled in a single .cbor file. The
Concise Binary Object Representation (CBOR) format supports JSON + binary array data
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in the data schema, is extremely small and lightweight in implementations, has support
across programming languages, is highly performant, and provides a link to Web3 storage
mechanisms.

ITK-Wasm file formats are available in ITK-Wasm IO functions but also in C++ via the
WebAssemblyInterface ITK module. This module can be enabled in an ITK build by setting
the -DModule_WebAssemblyInterface:BOOL=ON flag in CMake. And, loading and conversion is also
available native-binary Python bindings via the itk-webassemblyinterface Python package.

2.7. Artificial Intelligence and the Semantic Web

An ITK-Wasm LinkML [17] model provides FAIR definitions of the interface types that
enable high-performance, portable, sustainable, and reproducible spatial analysis.

The interface types include:

• BinaryFile - Representation of a binary file on a filesystem. For performance reasons,
use BinaryStream when possible, instead of BinaryFile.

• BinaryStream - Representation of a binary stream. For performance reasons, use
BinaryStream when possible, instead of BinaryFile.

• Image - Representation of an N-dimensional scientific image.
• JsonCompatible - A type that can be represented in JSON.
• Mesh - Representation of an N-dimensional mesh.
• PointSet - Representation of a set of N-dimension points.
• PolyData - Representation of a polydata, 3D geometric data for rendering that repre-

sents a collection of points, lines, polygons, and/or triangle strips.
• TextFile - Representation of a text file on a filesystem. For performance reasons, use

TextStream when possible, instead of TextFile.
• TextStream - Representation of a text stream. For performance reasons, use

TextStream when possible, instead of TextFile.
• Transform - Representation of a parametric spatial transformation that can be applied

to an Image, Mesh, PointSet, PolyData.

This model, combined with ITK-Wasm’s architecture, can perform analysis and visualiza-
tion using natural language inputs provided to large-language artificial intelligence models.
LinkML’s Pydantic models and TypeScript models enable interfaces like the Bioimage
Chatbot [18], [19] to semantically understand the needs of biologists without programming
knowledge, allowing the system to execute desired operations or generate scripts for batch
execution.

3. Results

3.1. Example application: generation of multiscale OME-Zarr images

A notable application of ITK-Wasm is the generation of Figure 3, a cloud-optimized bioimag-
ing format with broad international adoption [21], [22]. To generate OME-Zarr’s multiscale
representation of multidimensional bioimages, anti-aliasing filters must be applied.

As detailed by the Nyquist-Shannon Sampling Theorem, high frequency content in an image
must be reduced before downsampling to avoid Figure 5.

In the NGFF-Zarr package [23], ITK-Wasm anti-aliasing filters efficiently produce OME-Zarr
images suitable for Pyodide, JupyterLite, traditional CPython environments, or analysis
and visualization with other programming languages. While ITK-Wasm supports making
general scientific C++ codes accessibly in wasm, in this example we will examine how the
itk::DiscreteGaussianImageFilter is applied to address this problem [13], [24], [25].
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Figure 3.  Visible Male [20] frozen head computed tomography (CT) OME-Zarr volume, generated with
ITK-Wasm. There are three resolution scales, which can be selected with the Image Scale buttons. Reduced
resolutions are smoothed with a gaussian filter to avoid aliasing artifacts.

We apply the N-dimensional gaussian convolution filter:

𝐺(𝒙; 𝜎) = 1
(2𝜋𝜎2)𝑛/2

exp(−| 𝒙 |2

2𝜎2 ) (1)

Where:

• 𝐺(𝒙; 𝜎) is the Gaussian filter function
• 𝒙 is an n-dimensional vector representing spatial coordinates
• 𝜎 is the standard deviation of the Gaussian distribution
• 𝑛 is the number of dimensions
• | 𝒙 |2 is the squared Euclidean norm of 𝒙

For downsampling, we use 𝜎2 = (𝑘2 − 12)/(2√2 ln(2))
2
 where 𝑘 is the downsampling factor,

which is optimal [26].

3.2. C++ pipeline definition

The C++ wasm pipeline function, a pure function, is defined as a CLI11 executable [15]. It
uses an itk::wasm::Pipeline interface definition that operates on itk::wasm interface types.
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Figure 4.  A comparison of NRRD (Nearly Raw Raster Data), a traditional scientific image file format to
the OME-Zarr scientific image file format, a modern, web-friendly file format. NRRD is a single, monolithic
file with header and image pixel data formats concatenated. The header has a bespoke format and the
pixel data is often compressed with the zlib compression codec. In contrast, OME-Zarr has a hierarchical
structure, sometimes encoded in folders and files. Metadata is stored in JSON files. Image pixel data is
stored in separate N-dimensional chunks that are compressed with fast, high compression ratio modern
codecs like LZ4 or Zstd. Additionally, the image is represented at multiple resolutions. OME-Zarr’s
chunk, highly-compressed, multiscale representation makes it ideal for uses cases like cloud-computing
or extremely large images. However, this requires generation of the reduced resolution scales.

int main(int argc, char * argv[])
{
  itk::wasm::Pipeline pipeline("downsample", "Apply a smoothing anti-alias filter and subsample the
input image.", argc, argv);

  return itk::wasm::SupportInputImageTypes<PipelineFunctor,
    uint8_t,
    int8_t,
    uint16_t,
    int16_t,
    uint32_t,
    int32_t,
    uint64_t,
    int64_t,
    float,
    double
    >
  ::Dimensions<2U, 3U, 4U, 5U>("input", pipeline);
}

Here downsample defines the name of the pipeline function. A description for the pipeline is
also provided – this propagates to command line and language interface documentation.

In this function, we use the itk::wasm::SupportInputImageTypes utility to dispatch compile-
time optimized pipeline based on the pixel type and dimension of the input image. This
ensures excellent performance while limiting the wasm module binary size, critical for
performance and distribution, to the code that is used by the pipeline.

Next, pipeline inputs, outputs, and parameters are defined:
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Figure 5.  Aliasing artifacts at the second resolution scale. With naive subsampling (top) aliasing artifacts
introduce noise in the image at frequencies not supported by the sampling frequency. With gaussian anti-
aliasing filtering prior to downsampling (bottom), signal fidelity is preserved.

template<typename TImage>
class PipelineFunctor
{
public:
  int operator()(itk::wasm::Pipeline & pipeline)
  {
    using ImageType = TImage;
    constexpr unsigned int ImageDimension = ImageType::ImageDimension;

    using InputImageType = itk::wasm::InputImage<ImageType>;
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    InputImageType inputImage;
    pipeline.add_option("input", inputImage, "Input image")
      ->required()->type_name("INPUT_IMAGE");

    std::vector<unsigned int> shrinkFactors { 2, 2 };
    pipeline.add_option("-s,--shrink-factors", shrinkFactors, "Shrink factors")
      ->required()->type_size(ImageDimension);

    std::vector<unsigned int> cropRadius;
    pipeline.add_option("-r,--crop-radius", cropRadius, "Optional crop radius in pixel units.")
      ->type_size(ImageDimension);

    using OutputImageType = itk::wasm::OutputImage<ImageType>;
    OutputImageType downsampledImage;
    pipeline.add_option("downsampled", downsampledImage, "Output downsampled image")
      ->required()->type_name("OUTPUT_IMAGE");

    ITK_WASM_PARSE(pipeline);

The types used are integers, floating point numbers, std containers of the same, or itk::wasm
interface types. Long flags define parameter names in their language bindings, and their
descriptions are propagated to their documentation.

The pipeline interface syntax can be generated from a set of interactive prompts provided
by the create-itk-wasm CLI tool.

Once ITK_WASM_PARSE(pipeline) is called, input argument parsing and error handling is
performed and the input pipeline options are populated with their values. During CLI
execution, this means reading input files. When used with language bindings, files are not
used and inputs are populated with in-memory content that was lowered into the wasm
module with internal itk_wasm* functions.

Next comes the computational logic of the pipeline:

  using GaussianFilterType = itk::DiscreteGaussianImageFilter<ImageType, ImageType>;
  auto gaussianFilter = GaussianFilterType::New();
  gaussianFilter->SetInput(inputImage.Get());

  [...]
  ITK_WASM_CATCH_EXCEPTION(pipeline, shrinkFilter->UpdateLargestPossibleRegion());

  typename ImageType::ConstPointer result = shrinkFilter->GetOutput();
  downsampledImage.Set(result);

  return EXIT_SUCCESS;

In this example, we are using ITK library C++ functionality, but this can be arbitrary C+
+ code.

The .Get() and .Set() methods on the interface types supply the C++ interface to the input
values for computation and outputs. When the output interface type’s destructors are
called, they are written to files on disk in a CLI context or prepared for wasm module lifting
in an embedded language context.

The build is configured with simple, standard CMake:
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cmake_minimum_required(VERSION 3.16)
project(itkwasm-downsample LANGUAGES CXX)

find_package(ITK REQUIRED
 COMPONENTS
   WebAssemblyInterface
   ITKSmoothing
[...]

add_executable(downsample downsample.cxx)
target_link_libraries(downsample PUBLIC ${ITK_LIBRARIES})

The same C++ and CMake code can be used for a native toolchain along with the wasm
toolchain builds. This facilitates rapid development and easy debugging with native devel-
opment tooling.

Additionally, CTest tests can be defined for native or WASI execution, e.g.:

enable_testing()

add_test(NAME downsample
  COMMAND downsample
    ${CMAKE_CURRENT_SOURCE_DIR}/test/data/input/cthead1.png
    ${CMAKE_CURRENT_BINARY_DIR}/cthead1_downsampled.png
    --shrink-factors 2 2
    )

In the WASI case, ITK-Wasm enables execution via a wasm interpreter and by enabling
interpreter access to local input and output file directories.

3.3. Command line invocation

If our example downsample pipeline module is built into a native binary, help output is
Figure 6:

❯ ./downsample --help

The equivalent invocation with the wasmtime wasm runtime for the WASI wasm module
built from the same sources is:

❯ wasmtime run ./downsample.wasi.wasm --help

Where a native binary invocation is:

❯ ./downsample \
  ./vm_head.iwi.cbor ./downsampled.iwi.cbor \
  --shrink-factors 4 4 2

The equivalent wasm module invocation is:
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Figure 6.  Wasm module help invocation and generated help output.

❯ wasmtime run --dir=./ -- ./downsample.wasi.wasm \
  ./vm_head.iwi.cbor ./downsampled.iwi.cbor \
  --shrink-factors 4 4 2

All ITK-Wasm pipeline modules also support an --interface-json flag, which allows a
module to self-describe its interface for documentation and language binding generation,
described in the following sections.
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❯ wasmtime run ./downsample.wasi.wasm --interface-json
{
   "description": "Apply a smoothing anti-alias filter and subsample the input image.",
   "name": "downsample",
   "version": "0.1.0",
   "inputs": [
      {
         "description": "Input image",
         "name": "input",
         "type": "INPUT_IMAGE",
         "required": true,
         "itemsExpected": 1,
         "itemsExpectedMin": 1,
         "itemsExpectedMax": 1,
         "default": ""
      }
   ],
   "outputs": [
      {
         "description": "Output downsampled image",
         "name": "downsampled",
         "type": "OUTPUT_IMAGE",
         "required": true,
         "itemsExpected": 1,
         "itemsExpectedMin": 1,
         "itemsExpectedMax": 1,
         "default": ""
      }
   ],
   "parameters": [
    [...]
      {
         "description": "Shrink factors",
         "name": "shrink-factors",
         "type": "UINT",
         "required": true,
         "itemsExpected": 2,
         "itemsExpectedMin": 2,
         "itemsExpectedMax": 1073741824,
         "default": "[2,2]"
      },
    [...]
   ]
}

3.4. Generating TypeScript packages from ITK-Wasm modules

One of the toolchains that ITK-Wasm supports is Emscripten. To facilitate seamless integra-
tion with modern web development, we generate TypeScript packages from Emscripten-
generated wasm modules. These packages include Node.js bindings for server-side execu-
tion and browser-compatible interfaces for client-side execution.

3.4.1. Node.js bindings:

For server-side execution, our Node.js bindings provide direct access to the wasm module’s
functionality. Local filesystem paths are made available to the wasm module, enabling
pipelines to operate on files stored on the server. This allows developers to leverage ITK-
Wasm pipelines in a Node.js environment, ideal for tasks such as image processing or
analysis on a server.

3.4.2. Browser bindings:

In the browser, our bindings support pipelines that operate on files using the File object,
as well as a custom BinaryFile object. The BinaryFile object consists of a string path and a
Uint8Array binary, enabling efficient binary data transfer between the browser and wasm
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module. This allows developers to create web applications that interact with ITK-Wasm
pipelines, enabling tasks such as image filtering and segmentation in the browser.

Figure 7.  JavaScript and TypeScript package README rendered on npmjs.com.

July 10, 2024 272

https://www.npmjs.com/package/\@itk-wasm/downsample
https://www.npmjs.com/package/\@itk-wasm/downsample
https://www.npmjs.com/package/\@itk-wasm/downsample
http://npmjs.com


ITK-Wasm  | McCormick & Elliott, 2024

3.4.3. TypeScript Interface Types:

Our TypeScript interface types are designed to be idiomatic classes comprised of JSON-
compatible JavaScript types and TypedArrays. This ensures seamless interaction between
the wasm module and TypeScript code, enabling developers to write efficient, natural, and
type-safe code.

3.4.4. WebWorker-based execution:

To prevent interruption of the main user interface thread and support asynchronous
background wasm compilation, pipelines are executed in a WebWorker when running in
the browser. This ensures a responsive user experience while ITK-Wasm pipelines are
executing.

3.4.5. Parallelism with WebWorkerPool:

For tasks that require parallel processing, a compatible WebWorkerPool is available. This
enables developers to leverage multiple CPU cores to accelerate computationally intensive
tasks, such as image registration and segmentation.

3.4.6. Automated package configuration:

From an ITK-Wasm project, we generate a complete TypeScript/JavaScript package config-
uration. This includes:

• TypeScript Bindings: Generated for both Node.js and browser environments.
• TypeScript Compilation Configuration: Pre-configured for optimal performance and

compatibility.
• NPM Package Configuration: Ready for Figure 7.

3.4.7. Documentation and demo app:

To facilitate adoption and ease of use, we generate:

• README: A concise introduction to the project and its capabilities.
• Docsify Documentation: Detailed API documentation for the pipeline APIs.
• Demo App: An Figure 8 for sample data or user-provided data, allowing developers to

experiment with API parameters and visualize results.

By providing a comprehensive set of tools and configurations, we empower developers
to harness the full potential of ITK-Wasm in modern web applications, streamlining the
development of scientific imaging and analysis tools.

3.5. Seamless Integration with Python Ecosystem

3.5.1. Browser-based Pyodide Packages:

We leverage the Emscripten toolchain to generate bindings for browser-based Pyodide
Python packages. This enables seamless integration of ITK-Wasm with Pyodide, allowing
developers to utilize ITK’s algorithms in web-based Python applications.

3.5.2. Cross-Platform Compatibility with WASI:

For system applications, we provide a WASI-based Python package that ensures cross-
platform compatibility across all major platforms and architectures. This broadens the
reach of ITK-Wasm, enabling developers to deploy ITK-based applications on a wide range
of systems.
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Figure 8.  Interactive live API demo application.

3.5.3. GPU Acceleration with cuCIM:

To further enhance performance, we utilize the dispatch Python package’s capabilities in
conjunction with a cuCIM accelerator package. This enables GPU acceleration, to enable
improvements the execution speed, especially in applications where bulk data resides on
the GPU, which is often the case for AI-enabled workflows.

3.5.4. API Documentation and Pythonic Interfaces:

We generate API documentation for the simple, Pythonic interfaces, ensuring that develop-
ers can easily understand and utilize ITK-Wasm’s functionality. The interfaces are designed
to be intuitive and easy to use, streamlining the development process.
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Figure 9.  Downsample example package virtual environment size. ITK-Wasm WASI packages are simple,
small, self-contained, and have minimal dependencies. The associated accessibility and sustainability for
software that depends on these packages is reflected by the virtual environment size. When compared to
a native binary or CUDA-based implementations, the WASI implementation has significantly reduced size
and complexity.

3.5.5. Efficient Serialization for Parallel Computing:

The interface types’ Python representation are built using Python data classes, comprising
standard Python data types and NumPy arrays. This design enables trivial and efficient

Figure 10.  Downsample example performance comparison between ITK-Wasm WASI, an equivalent ITK
Python native binary implementation, and the ITK-Wasm CuCIM implementation. Executed on an Ryzen
9, 7940HS CPU, NVIDIA RTX 4070 Laptop GPU, Ubuntu 24.04 Linux system. Mean and standard deviation
for ten iterations. While in this particular example the currently single-threaded WASI implementation is
significantly slower than the native binary implementation, multi-threaded improvements with the native
binaries hold promise for when this is enabled on the WASI binary (future work). NVIDIA CUDA-based
ITK-Wasm CuCIM, applied without any other code changes when the itkwasm-downsample-cucim package
is installed, demonstrates easy access to GPU acceleration when NVIDIA GPUs and CUDA software is
available.
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Figure 11.  Generated API documentation describes the Pythonic interfaces.

serialization, making it ideal for parallel computing with Dask. Developers can leverage this
capability to scale their applications and tackle large-scale computing tasks.

3.5.6. Broad Applicability in Scientific Computing:

The utility of ITK-Wasm extends beyond web applications, as it can be seamlessly integrated
into desktop applications like 3D Slicer [27]. This versatility demonstrates the broad applic-
ability of ITK-Wasm in the scientific computing ecosystem, making it an invaluable tool for
researchers and developers alike.

4. Discussion
WebAssembly was designed with interoperability in mind. Initially supporting languages
like C and C++, the ecosystem has grown to include Rust, Go, Python, and more. This broad
language support makes WebAssembly a versatile tool for developers across different
domains.

ITK-Wasm’s approach, which focuses on bringing wasm’s capabilities to scientific software,
excels in sustainability and composability thanks to small, self-contained, and idiomatic
packages that are platform-agnostic and have minimal dependencies. This design enables
outstanding computational reproducibility.

Future work will focus on enhanced integration of wasm community tools and standards:

1. Multi-language Support: Support for bindings and package generation in additional
languages like Java, C#, and Rust, broaden wasm module applicability.

2. WebAssembly Interface Types: Standardizes the way Wasm modules interact with
each other and with host environments, simplifying the integration process. We plan
to bridge our interface types with the emerging Wasm Interface Type (WIT) defin-
ition.

3. Component Model: An emerging standard that aims to improve modularity and
reuse of Wasm components, further enhancing interoperability. Further instrumen-
tation with the Component Model standard will enable generation of composite
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Figure 12.  The itkwasm-downsample Python package in a traditional native desktop application, 3D Slicer.

processing pipeline wasm modules that could be built from wasm component mod-
ules written in multiple languages.

ITK-Wasm provides a robust framework for scientific computing that leverages
WebAssembly’s strengths. The framework bridges the gap between web-based and native
applications, enabling high-performance, cross-platform scientific analysis. By integrating
the principals of the WebAssembly Component Model, ITK-Wasm enhances interoperability
and sustainability, allowing scientific Python to thrive in a multi-language ecosystem.

5. Conclusion
ITK-Wasm stands at the forefront of fostering interoperability, multi-language program sup-
port, sustainability, accessibility, and reproducibility in scientific computing. By integrating
the WebAssembly Component Model, ITK-Wasm not only enhances scientific Python’s
capabilities but also sets a new standard for developing and distributing multi-language
projects. The future of scientific computing is bright with ITK-Wasm’s contributions to the
field, providing a universal platform for spatial analysis and visualization.

6. Links:
• Documentation: https://wasm.itk.org/
• Source code: https://github.com/InsightSoftwareConsortium/ITK-Wasm
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Abstract

The ATLAS experiment at CERN explores vast amounts of physics data to answer the most
fundamental questions of the Universe. The prevalence of Python in scientific computing
motivated ATLAS to adopt it for its data analysis workflows while enhancing users’ experience.
This paper will describe to a broad audience how a large scientific collaboration leverages the
power of the Scientific Python ecosystem to tackle domain-specific challenges and advance
our understanding of the Cosmos. Through a simplified example of the renowned Higgs
boson discovery, attendees will gain insights into the utilization of Python libraries to discrim-
inate a signal in immersive noise, through tasks such as data cleaning, feature engineering,
statistical interpretation and visualization at scale.

Keywords ATLAS, particle physics, Scikit-HEP

1. Introduction
The field of high energy physics (HEP) is devoted to the study of the fundamental forces
of Nature and their interactions with matter. To study the structure of the Universe on
the smallest scales requires the highest energy density environments possible — similar
to those of the early Universe. These extreme energy density environments are created at
the CERN international laboratory, in Geneva, Switzerland, using the Large Hadron Collider
(LHC) to collide “bunches” of billions of protons at a center-of-mass energy of 

√
𝑠 = 13 TeV.

The resulting collisions are recorded with building-sized particle detectors positioned
around the LHC’s 27 km ring that are designed to measure subatomic particle properties.
Given the rarity of the subatomic phenomena of interest, the rate of the beam crossings is a
tremendous 40 MHz to maximize the number of high quality collisions that can be captured
and read out by the detectors. Even with real-time onboard processing (“triggering”) of the
experiment detector readout to save only the most interesting collisions, detectors like the
ATLAS experiment [1] still produce multiple petabytes of data per year. These data are then
further filtered through selection criteria on the topology and kinematic quantities of the
particle collision “events” recorded into specialized datasets for different kinds of physics
analysis. The final datasets that physicists use in their physics analyses in ATLAS is still on
the order of hundreds of terabytes, which poses challenges of compute scale and analyst
time to efficiently use while maximizing physics value.

Traditionally, the ATLAS and the other LHC experiment have created experiment-specific
custom C++ frameworks to handle all stages of the data processing pipeline, from the initial
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construction of high-level physics objects from the raw data to the final statistical analyses.
Motivated by the broad success of the Scientific Python ecosystem across many domains of
science, and the rise of the Scikit-HEP ecosystem of Pythonic tooling for particle physics [2],
[3] and community tools produced by the Institute for Research and Innovation in Software
for High Energy Physics (IRIS-HEP) [4], [5], there has been a broad community-driven
shift in HEP towards use of the Scientific Python ecosystem for analysis of physics data —
a PyHEP ecosystem [6]. The use of dataframes and array programming for data analysis
has enhanced the user experience while providing efficient computations without the need
of coding optimized low-level routines. The ATLAS collaboration is further extending this
ecosystem of tooling to include high-level custom Python bindings to the low level C++
frameworks using nanobind [7]. Collectively, these tools are modernizing the methods which
researchers are engaging data analysis at large scale and providing a novel end-to-end
analysis ecosystem for the ATLAS collaboration.

2. Employing the Scientific Python ecosystem
The multiple stages of physics data processing and analysis map onto different parts of
the Scientific Python ecosystem. This begins with the highly-structured but jagged nature
of the event data in HEP. The data structure of each event consists of variable length lists
of physics objects (e.g. electrons, collections of tracks from charged objects). To study the
properties of the physics objects in a statistical manner, a fixed event analysis procedure is
repeated over billions of events. This has traditionally motivated the use of “event loops”
that implicitly construct event-level quantities of interest and leveraged the C++ compiler to
produce efficient iterative code. This precedent made it difficult to take advantage of array
programming paradigms that are common in Scientific Python given NumPy [8] vector
operations. The Scikit-HEP library Awkward Array [9] provides a path forward by providing
NumPy-like idioms for nested, variable-sized (JSON-like) data and also brings analysts into
an array programming paradigm [10].

With the ability to operate on HEP data structures in an array programming — or “colum-
nar” — approach, the next step is to be able to read and write with the HEP domain specific
ROOT [11] file format — which has given the particle physics community columnar data
structures with efficient compression since 1997 [12]. This is accomplished with use of
the uproot library [13], which allows for efficient transformation of ROOT data to NumPy
or Awkward arrays. The data is then filtered through kinematic and physics signature
motivated selections using Awkward manipulations and queries to create array collections
that contain the passing events. Through intense detector characterization and calibration
efforts, the ATLAS collaboration has developed robust methods and tooling to apply correc-
tions to the data and evaluate systematic uncertainties. For instance, corrections to the
signal collected by a specific calorimeter subsystem along with systematic uncertainties
due to the imperfect knowledge of the subsystem. Given the custom nature of the detector
and correction implementations, these corrections are implemented in custom C++ libraries
in the ATLAS software framework, Athena [14], [15]. To expose these C++ libraries to
the Pythonic tooling layer, custom Python bindings are written using nanobind for high
efficiency, as seen in Figure 1.

To contend with the extreme data volume, efficient distributed computing is an essential
requirement. Given the success of Dask [17] in the Scientific Python ecosystem, and its
ability to be deployed across both traditional batch systems and cloud based infrastructure
with Kubernetes, the Scikit-HEP ecosystem has built extensions to Dask that allow for native
Dask collections of Awkward arrays [18] and computing multidimensional boost-histogram
objects [19] with Dask collections [20]. Using Dask and these extensions, the data selection
and systematic correction workflow is able to be horizontally scaled out across ATLAS
collaboration compute resources to provide the data throughput necessary to make analysis
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Figure 1.  The data access abstract interface from the high level user facing Python API to the ATLAS
Event Data Model (EDM) access library that exposes the shared ATLAS combined performance (CP) tools
for reconstruction, identification, and measurement of physics objects. [16]

feasible. This is often achieved through use of the high level coffea columnar analysis
framework [21] which was designed to integrate with Dask and these HEP specific Dask
extensions.

The resulting data objects that are returned to analysts are histograms of physics quantity
distributions — such as the reconstructed invariant-mass of a collection of particles or
particle momentum. Using the hist library [22] for higher level data exploration and
manipulation, physicists are then able to efficiently further manipulate the data distribu-
tions using tooling from the broader Scientific Python ecosystem and create domain-centric
visualizations using the mplhep [23] extension of Matplotlib [24]. From these high level data
representations of the relevant physics, physicists are then able to serialize the distributions
and use them for the final stages of data analysis and statistical modeling and inference.

3. Uncovering the Higgs boson
The most famous and revolutionary discovery in particle physics this century is the discov-
ery of the Higgs boson — the particle corresponding to the quantum field that gives mass
to fundamental particles through the Brout-Englert-Higgs mechanism — by the ATLAS and
CMS experimental collaborations in 2012. [25], [26] This discovery work was done using
large amounts of customized C++ software, but in the following decade the state of the PyHEP
community has advanced enough that the workflow can now be done using community
Python tooling. To provide an overview of the Pythonic tooling and functionality, a high
level summary of a simplified analysis workflow [27] of a Higgs “decay” to two intermediate
𝑍 bosons that decay to charged leptons (ℓ) (i.e. electrons (𝑒) and muons (𝜇)), 𝐻 → 𝑍𝑍∗ → 4ℓ,
on ATLAS open data [28] is summarized in this section.

3.1. Loading data

Given the size of the data, the files used in a real analysis will usually be cached at a
national level “analysis facility” where the analysis code will run. Using coffea, uproot, and
Dask, these files can then be efficiently read and the tree structure of the data can populate
Awkward arrays.

3.2. Cleaning and selecting data

Once the data is in Awkward arrays, additional selections need to be applied before it can be
analyzed. Only physics objects of adequate quality are kept for further analysis and those
should reconstruct the topology of interest. In this particular case, due to the decay of the
Higgs boson to two leptons, the data selected contain four charged leptons grouped in two
opposite flavor lepton pairs (so that the total charge is zero, as the Higgs and the 𝑍-bosons
are electrically neutral). Additionally, in order to compare various kinds of simulated data,
the events need to be normalized/weighted given their relative appearance in reality and
the amount of actual data collected by the experiment.
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from coffea.nanoevents import NanoEventsFactory, PHYSLITESchema

def get_uris_from_cache(): ...

def filter_name(name):
    return name in (
        "AnalysisElectronsAuxDyn.pt",
        "AnalysisElectronsAuxDyn.eta",
        "AnalysisElectronsAuxDyn.phi",
        "AnalysisElectronsAuxDyn.m",
        "AnalysisElectronsAuxDyn.charge",
        ...,
    )

file_uris = get_uris_from_cache(...)

# uproot used internally to read files into Awkward arrays
events_mc = NanoEventsFactory.from_root(
    file_uris,
    schemaclass=PHYSLITESchema,
    uproot_options=dict(filter_name=filter_name),
    permit_dask=True,
).events()

Program 1.  Using coffea, tree structured ROOT files are read with uproot from an efficient file cache, and
the relevant branches for physics are filtered out into Awkward arrays. The operation is scaled out on a
Dask cluster for read performance.

These selection and weighting can then be implemented in an analysis specific coffea
processor, and then the processor can be executed used a Dask executor to horizontally
scale out the analysis selection across the available compute.

3.3. Feature engineering: The invariant mass

In order to discriminate the events of interest, i.e. candidates of the Higgs boson decay,
from the vast background which has the same experimental signature, a discriminating
feature is constructed. The example shown uses a simple, physics-inspired discriminant the
“invariant mass” but the methods used can use complex feature engineering that involve
machine learning methods to calculate more efficient discriminants. The invariant mass
is the mass of a system that remains constant regardless of the system’s motion or the
reference frame in which it is measured. Invariant mass is derived from the energy and
momentum of a system of particles and is a fundamental property of the system:

𝑚 =
√𝐸2 − 𝑝(𝑐)2

𝑐2
(1)

where 𝐸 and 𝑝 is the total energy and momentum of the particles, respectively.

By detecting and measuring the energies and momenta of the detected particles at the
experiment, we can reconstruct the invariant mass of the decay system. Particle systems
originating from the decay of the Higgs boson will have a characteristic value of the
invariant mass, which after the discovery in 2012 we know it is about 125 GeV/𝑐2. This is
the quantity that will allow us to discriminate from particle systems that originate from
background processes.

3.4. Measurement uncertainties

One of the most expensive operations that happens during the event selections is the com-
putation of systematic variations of the events to accommodate for imperfect knowledge of
the detector systems. This in practice requires applying complex, experiment specific cor-
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import awkward as ak
import hist
import vector
from coffea import processor
from distributed import Client

def get_xsec_weight(sample, infofile):
    """Returns normalization weight for a given
sample."""
    lumi = 10_000  # pb^-1
    xsec_map = infofile.infos[sample]  # dictionary with
event weighting information
    xsec_weight = (lumi * xsec_map["xsec"]) /
(xsec_map["sumw"] * xsec_map["red_eff"])
    return xsec_weight

def lepton_filter(lep_charge, lep_type):
    """Filters leptons: sum of charges is required to
be 0, and sum of lepton types 44/48/52.
    Electrons have type 11, muons have 13, so this
means 4e/4mu/2e2mu.
    """
    sum_lep_charge = ak.sum(lep_charge, axis=1)
    sum_lep_type = ak.sum(lep_type, axis=1)
    good_lep_type = ak.any(
        [sum_lep_type == 44, sum_lep_type == 48,
sum_lep_type == 52], axis=0
    )
    return ak.all([sum_lep_charge == 0, good_lep_type],
axis=0)

class HZZAnalysis(processor.ProcessorABC):
    """The coffea processor used in this analysis."""

    def __init__(self):
        pass

    def process(self, events):
        # The process function performs columnar operations
on the events
        # passed to it and applies all the corrections
and selections to
        # either the simulation or the data (e.g.
get_xsec_weight and
        # lepton_filter). All the event level data
selection occurs here
        # and returns accumulators with the selections.

        vector.register_awkward()
        # type of dataset being processed, provided via
metadata (comes originally from fileset)
        dataset_category =
events.metadata["dataset_name"]

        # apply a cut to events, based on lepton charge
and lepton type
        events = events[lepton_filter(events.lep_charge,
events.lep_typeid)]

        # construct lepton four-vectors
        leptons = ak.zip(
            {
                "pt": events.lep_pt,
                "eta": events.lep_eta,
                "phi": events.lep_phi,
                "energy": events.lep_energy,

            },
            with_name="Momentum4D",
        )

        # calculate the 4-lepton invariant mass for each
remaining event
        # this could also be an expensive calculation
using external tools
        mllll = (
            leptons[:, 0] + leptons[:, 1] + leptons[:,
2] + leptons[:, 3]
        ).mass / 1000

        # create histogram holding outputs, for data
just binned in m4l
        mllllhist_data = hist.Hist.new.Reg(
            num_bins,
            bin_edge_low,
            bin_edge_high,
            name="mllll",
            label="$\mathrm{m_{4l}}$ [GeV]",
        ).Weight()  # using weighted storage here for
plotting later, but not needed

        # three histogram axes for MC: m4l, category,
and variation (nominal and
        # systematic variations)
        mllllhist_MC = (
            hist.Hist.new.Reg(
                num_bins,
                bin_edge_low,
                bin_edge_high,
                name="mllll",
                label="$\mathrm{m_{4l}}$ [GeV]",
            )
            .StrCat([k for k in fileset.keys() if k !=
"Data"], name="dataset")
            .StrCat(
                ["nominal", "scaleFactorUP",
"scaleFactorDOWN", "m4lUP", "m4lDOWN"],
                name="variation",
            )
            .Weight()
        )

        # ...
        # fill histograms based on dataset_category
        # ...

        return {"data": mllllhist_data, "MC":
mllllhist_MC}

    def postprocess(self, accumulator):
        pass

Program 2.  A coffea processor designed to make physics motivated event selections to create accumulators of the 4-lepton invariant mass.
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import awkward as ak

from atlascp import EgammaTools  # ATLAS CP tool Python nanobind bindings

def get_corrected_mass(energyCorrectionTool, electrons, sys=None):
    electron_vectors = ak.zip(
        {
            "pt": energyCorrectionTool(electrons, sys=sys).newPt,
            "eta": electrons.eta,
            "phi": electrons.phi,
            "mass": electrons.m,
        },
        with_name="Momentum4D",
    )
    return (electron_vectors[:, 0] + electron_vectors[:, 1]).mass / 1000  # GeV

energy_correction_tool = EgammaTools.EgammaCalibrationAndSmearingTool()
# ...
# configure and initialize correction algorithm
# ...
energy_correction_tool.initialize()

corrected_m_Res_UP = get_corrected_mass(
    energy_correction_tool, electrons, "Res_up"
).compute()

Program 3.  Simplified example of what the Python API for a systematic correction tool with a columnar
implementation looks like.

rections to each event, using algorithms implemented in C++. Historically these tools were
implemented for an event loop processing paradigm, but with recent tooling additions, as
shown in Figure 1, efficient on-the-fly systematic corrections can be computed for array
programming paradigms.

The following provides an example of high level Python APIs that provide handles to these
tools to use in the workflows described so far. These tools are efficient enough to be able to
apply multiple systematic variations in analysis workflows, as seen in Figure 2.

3.5. The “discovery” plot

After running the coffea processors, the resulting data from the selections is accumulated
into boost-histogram objects, as seen visualized in Figure 3.

These histograms are then serialized into files with uproot and used by the statistical
modeling and inference libraries pyhf [29], [30] and cabinetry [31] to build binned statistical
models and efficiently fit the models to the observed data using vectorized computations
and the optimization library iminuit [32] for full uncertainties on all model parameters. The
resulting best-fit model parameters — such as the scale factor on the signal component of
the model corresponding to the normalization on the Higgs contributions — are visualized
in Figure 4, where good agreement between the model predictions and the data is observed.
The signal component, clearly visible above the additional “background” components of
the model, are Higgs boson events, with an observed count in agreement with theoretical
expectations.

4. Conclusions
When the Higgs boson was discovered in 2012, the idea of being able to perform real
Pythonic data analysis in HEP, let alone efficient analysis, was viewed as unfeasible. Though
investment in the broader Scientific Python ecosystem, and development of the domain
specific pieces in the Scikit-HEP organization the field of particle physics successfully cre-
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Figure 2.  Example of the reconstructed dilepton invariant mass distribution in simulation with the
electron reconstruction and identification efficiency scale factor (SF) and corrections to the energy reso-
lution (res) energy scale (scale) computed on-the-fly using the nanobind Python bindings to the ATLAS C++
correction tools. The total variation in the systematic corrections is plotted as a hashed band. [16]

ated a PyHEP ecosystem of robust tooling. Further investment by the ATLAS collaboration
has resulted in new performant tooling for complex systematic corrections that will allow
for more full and complex operations to be performed entirely within a Python workflow,
helping to further reduce the time to insight for physics analysts.

import hist
import mplhep

mplhep.histplot(
    all_histograms["data"], histtype="errorbar", color="black", label="Data"
)
hist.Hist.plot1d(
    all_histograms["MC"][:, :, "nominal"],
    stack=True,
    histtype="fill",
    color=["purple", "red", "lightblue"],
)

Program 4.  Using mplhep, hist, and matplotlib the post-processed histograms of the simulation and the
data are visualized in advance of any statistical inference of best-fit model parameters.
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Figure 3.  Using mplhep, hist, and matplotlib the post-processed histograms of the simulation and the
data are visualized in advance of any statistical inference of best-fit model parameters.

import cabinetry
import numpy as np

config = cabinetry.configuration.load("config.yml")

cabinetry.templates.collect(config)
cabinetry.templates.postprocess(config)  # optional post-processing (e.g. smoothing)
workspace = cabinetry.workspace.build(config)

model, data = cabinetry.model_utils.model_and_data(workspace)
fit_results = cabinetry.fit.fit(model, data)

# create post-fit model prediction
postfit_model = cabinetry.model_utils.prediction(model, fit_results=fit_results)

# binning to use in plot
plot_config = {
    "Regions": [
        {
            "Name": "Signal_region",
            "Binning": list(np.linspace(bin_edge_low, bin_edge_high, num_bins + 1)),
        }
    ]
}

figure_dict = cabinetry.visualize.data_mc(
    postfit_model, data, config=plot_config, save_figure=False
)

# modify x-axis label
fig = figure_dict[0]["figure"]
fig.axes[1].set_xlabel("m4l [GeV]")

Program 5.  Using cabinetry, pyhf, and matplotlib the data and the post-fit model prediction are visu-
alized.
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Figure 4.  Using cabinetry, pyhf, and matplotlib the data and the post-fit model prediction are visualized.
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Abstract

Interactive visualizations are invaluable tools for building intuition and supporting rapid
exploration of datasets and models. Numerous libraries in Python support interactivity, and
workflows that combine Jupyter and IPyWidgets in particular make it straightforward to build
data analysis tools on the fly. However, the field is missing the ability to arbitrarily overlay
widgets and plots on top of others to support more flexible details-on-demand techniques.
This work discusses some limitations of the base IPyWidgets library, explains the benefits of
IPyVuetify and how it addresses these limitations, and finally presents a new open-source
solution that builds on IPyVuetify to provide easily integrated widget overlays in Jupyter.

Keywords interactive visualization, UX, python, javascript, web development, custom
visualizations

1. Introduction
As the tech industry and computation-based research continues to gravitate toward using
more and more data to solve problems, the capability to interact with and understand that
underlying data becomes increasingly important. Development of effective visualization
tools and frameworks to address this need has turned into an ecosystem where components
from different sources all work in unison and developers can piece together what they need
for their specific goals. For many reasons, including the ease of organization and allowing
documentation, development, and analysis to all exist in the same place, Jupyter notebooks
[1] have become a common platform for data science workflows, and by extension have
become the common ground where these different tools can coexist. An important piece
to this platform is the ability to interact with and visualize data, which is crucial in many
data science/analysis workflows. Interactive visualization allows users to manipulate and
explore data, which enhances understanding, improves engagement, and often leads to a
quicker intuitive grasp of the data.

IPyWidgets [2], a framework for bridging between the IPython kernel and HTML widgets
within Jupyter, has been particularly influential for enabling interactive visualization.
Many libraries such as Panel [3] and Solara [4] integrate closely with IPyWidgets and thus
contribute to the greater visualization ecosystem within Python. Although a great deal of
progress has been made in this community, a missing element is a more generalized and
flexible approach to aspects of the Section  1.1 paradigm. To support this approach, the
authors have developed a library that provides wrapper components that can render any
widget as an overlay on top of other widgets. These components simplify designing layouts
and visualizations that would be difficult to implement from scratch.

In this work, we first discuss IPyWidgets and what makes it such an important piece of the
overall system, as well as some of the limitations encountered when building only with the
base IPyWidgets framework. We then briefly cover some of the available libraries that build
on top of IPyWidgets, highlighting IPyVuetify, which addresses most of the limitations of
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base IPyWidgets. Finally, we discuss a library we have open sourced called IPyOverlay and
an example use case that motivated its design.

1.1. Details on Demand

Details on demand is one piece of the “visual information-seeking mantra” of Schneiderman
(1996) describing an overall design approach to building interactive tooling. The general
flow of interaction proposed by this mantra is “overview first, zoom and filter, then details-
on-demand” [5]. Overview ideally starts with broader aggregate visualizations: something
to gain a sense of the general scope, complexity, or shape of the data. From there a user can
identify areas of interest to hone in on with whatever zoom and filter tools are applicable
for their data’s modality. Finally, details on demand means that the user can see or interact
with more in-depth and specific information for pieces of their data, often in the form of
a pop-up window or inset graph. This selective detail capability provides a flexible user
experience that keeps the initial interface uncluttered without sacrificing the ability to
organically explore the data.

A simple and widespread example of details on demand are tooltips. Descriptions of compo-
nents or data point values in visualizations would often create an unusably noisy interface
if they were always visible. Instead, a more concise view is maintained while providing
the necessary information in a spatially relevant view when the user specifically requests
it. Readers viewing the web version of these proceedings can explore a simple example of
details on demand live by hovering over any of the figure references. Figure 1 shows how
hovering over a reference (the demand) opens a window at the cursor that displays the
target of the reference (the details).

2. IPyWidgets
IPyWidgets is a library for implementing user interactivity inside of a Jupyter Notebook.
A key challenge this framework has to overcome is the separation between the Python
kernel and the browser-based Jupyter frontend, which operates through HTML, CSS, and
JavaScript as a web application. Web application development is often a challenging
software engineering problem in its own right, and many Python developers and scien-
tists may not have either the experience or the desire to write custom frontend code in
JavaScript. IPyWidgets addresses this problem by supporting mechanisms for automatic
state synchronization between a Python model and a JavaScript model, expanded on below,
and providing a set of predefined components that a developer can initialize and use in
their Python code. While IPyWidgets has limitations, it is a valuable tool for the scientific
Python community by allowing the combination of two language ecosystems with many
visualization libraries and capabilities.

To highlight the simplicity of IPyWidgets, some minimal examples are provided here. In the
simplest UI cases, IPyWidgets allows wrapping a function call that produces a visual output
based on some set of input parameters with ipywidgets.interactive(), which automatically

Figure 1.  A figure demonstrating details on demand in action when a user hovers over the figure
reference for Figure 1.

July 10, 2024 292



Supporting Greater Interactivity in the IPython Visualization Ecosystem  | Martindale et al., 2024

import matplotlib.pyplot as plt
import numpy as np
import ipywidgets as ipw

def graph(coefficient):
    x = np.arange(0, 10, .1)
    y = np.sin(coefficient * x)
    plt.plot(x, y)

ipw.interactive(graph, coefficient=(0.1, 10.1))

Program 1.  Minimal IPyWidget usage for a plot of a sine wave based on one parameter/coefficient. The
interactive() call turns the passed tuple for coefficient into a slider widget with the range set to this
tuple. See Figure 2 for output.

constructs an appropriate input widget for each parameter. In this case, the developer need
not manually initialize any Python widgets, as seen in the below code sample Program 1
and Figure 2.

More complex interfaces often require displaying multiple visualizations and outputs and
may have controls that must interact. Thus, in practice a more common setup might follow
a pattern shown in Program 2, where several user input and output widgets are defined
and placed into a layout widget. UI code is generally event driven, so functionality is
added by attaching event handlers to input widgets with .observe(), which will then call
the associated event functions when the user interacts with the input widget. IPyWidget’s
generic Output widget supports IPython’s set of display functions, and anything that can be
rendered as the output to a Jupyter cell can be placed into a specified output widget.

2.1. State Synchronization

One of the primary challenges that IPyWidgets helps solve is the problem of state synchro-
nization, where updates to variables made on either side of the Python-JavaScript link

Figure 2.  A simple IPyWidgets example using interactive(). Every time the slider is moved, the
graph(coefficient) function is called with the updated value and regenerates/displays the new plot.
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import ipywidgets as ipw

# initialize the widgets
graph1_out = ipw.Output()
graph2_out = ipw.Output()

graph1_param = ipw.FloatSlider(min=0, max=10, value=1)  # a parameter only influencing graph 1
graph2_param = ipw.IntSlider(min=0, max=10, value=1)  # a parameter only influencing graph 2
both_graphs_param = ipw.IntText(value=1)  # a parameter that affects both graphs

# create the dashboard layout, combining all the widgets
dashboard = ipw.VBox([
    ipw.HBox([graph1_out, graph2_out]),
    ipw.HBox([graph1_param, both_graphs_param, graph2_param]),
])

# event handler functions
def on_graph1_param_change(change):
    with graph1_out:
        print(f"Updating graph 1 based on: graph1_param={change['new']}, {both_graphs_param.value=}")

def on_graph2_param_change(change):
    with graph2_out:
        print(f"Updating graph 2 based on: graph2_param={change['new']}, {both_graphs_param.value=}")

def on_both_graphs_param_change(change):
    with graph1_out:
        print(f"Updating graph 1 based on: {graph1_param.value=}, both_graphs_param={change['new']}")
    with graph2_out:
        print(f"Updating graph 2 based on: {graph2_param.value=}, both_graphs_param={change['new']}")

# attach event handlers
graph1_param.observe(on_graph1_param_change, names=["value"])
graph2_param.observe(on_graph2_param_change, names=["value"])
both_graphs_param.observe(on_both_graphs_param_change, names=["value"])

# render the dashboard
dashboard

Program 2.  An example of a more typical structure for a dashboard with several inputs and outputs that
might have more complicated interdependencies than can be handled with interactive().

are monitored and communicated across when they occur. Based on this communication,
changes to variables in Python are reflected in the browser’s JavaScript and vice versa.
Under the hood, IPyWidgets makes use of backbone.js [6], a model-view-_ (MV_) framework
for JavaScript that implements synchronization between a JavaScript model (where data/
attributes/values for a widget are stored) and a JavaScript view (the code that creates the
visual UI elements the user sees and interacts with in their browser). IPyWidgets connects
to this backbone model via WebSockets, through which model changes and events are sent
as serialized JSON.

Figure 3 shows a simplified view of the communication channels between the Python model
and the JavaScript model/view for an example slider widget. Modifying an attribute on
the Python model sends the modification to the JavaScript model, where any changes that
would modify the visual aspects of the widget are communicated to the JavaScript view
(e.g., a change in the slider value would correspondingly update the position of the slider
indicator within the track). Similarly, a user interacting with the widget (e.g., moving the
slider within the track) updates the JavaScript state, which communicates this change to
the Python model and calls any event handlers listening for changes to the value.

2.2. Common Framework

One of the most important benefits of IPyWidgets is that it provides a low-level framework
abstracting away many of the specifics for how communication between a kernel, server,
and frontend takes place. This framework can be used to design new widgets by providing
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Figure 3.  State mirroring between models and view interaction for an example slider widget.

implementations for the models and view code, without needing to reinvent the various
messaging system mechanisms that solve the state synchronization problem discussed
previously. All of this has allowed many libraries to emerge, providing novel functionality,
a great diversity of new types of widgets, and other frameworks that can support rendering
IPyWidgets within other contexts.

2.3. Limitations

Despite the flexibility of IPyWidgets as a framework and its value as a core-enabling
technology for user interaction, we explicitly highlight some of the limitations of using
IPyWidgets as a library of components alone. These limitations motivate the use of some of
the many existing libraries that extend and build on top of the IPyWidgets framework, as
well as our own work in the IPyOverlay implementation.

2.3.1. Components:

The set of default components included in the IPyWidgets library cover all standard form
elements such as buttons, drop-down menus, and text fields, as well as a generic Output
widget. The Output widget can render any of the MIME-types supported by normal Jupyter
cell outputs, including Markdown, images, plots, and even raw HTML. Additionally, there
are basic layout components to stack other widgets vertically, horizontally, or via tabs, all of
which can be nested to allow grouping widgets. Although these components are often more
than sufficient for simple visualizations, more complex interfaces with richer interaction
paradigms can be hard to achieve. Some examples of dashboard elements that cannot
be created with IPyWidgets’ default components include interactive data frames, dialog
windows, and floating buttons.

2.3.2. Events:

Another limiting factor for creating more complex interactivity is the type of events that can
be observed on the components. UIs are inherently event-driven; the user interacts with
widgets/visualizations, and these events run code that update the interface. This is most
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often implemented by registering “observers” or event-handlers, which tells IPyWidgets to
run a specified function every time a particular event is raised. In practice, for the default
components provided by the IPyWidgets library, this is mostly limited to value changes
(e.g., a slider is moved, the text in a textbox is changed, or an item in a drop-down menu is
selected).

These types of events are sufficient for basic interfaces, but often more complex types
of interactions can greatly enhance the capabilities of a tool. The ability to detect mouse
events can be crucial, enabling possibilities such as highlighting parts of a visualization
when the mouse hovers over a row in a dataframe, or running an analysis when a user has
highlighted a piece of text from a document. These types of user actions are not feasible
with the default widgets.

2.3.3. Custom Styling and Layout:

Web pages and dashboards that need more complicated layouts than conventional linear
stacks and grids of elements generally need to use CSS to control positioning. More than
just a mechanism for changing aesthetic and colors, CSS provides rules for structuring the
interface. However, this often comes at the cost of greater code complexity and excessive
layers of nested elements and rule sets. IPyWidgets components have some capability to
modify their CSS but are limited to a subset of rules available through Python attributes.
This makes common style changes easier to work with, but the lack of any direct access to
arbitrary CSS rules limits more complex layouts, namely the ability to float one widget on
top of another.

2.3.4. Custom IPyWidget Complexity:

A key benefit of IPyWidgets as a framework is that it allows developers to design, build,
and publish new components that other people can use in place of or alongside the default
widgets. However, the complexity of the infrastructure required to do this with the base
IPyWidgets library still makes it challenging to prototype or put together a one-off custom
component in a project. Several libraries we discuss in the next section have improved
this process substantially, but traditionally a custom component library was developed by
starting from a Jupyter-provided cookie-cutter template [7] in a separate project.

One of the difficulties that comes with a project created in this way is the need to include the
development infrastructure of both a Python and a JavaScript project. JavaScript toolchains
and dependency management can quickly become complicated with the number of pack-
ages, build system tools, and config files often necessary. Prototyping the component can be
a slow process as well, requiring a rebuild on every JavaScript change. Setting up Jupyter to
use these unpublished components requires additional environment management to work
correctly. Finally, custom widgets built through this method often require fairly significant
boilerplate code because the developer is directly in charge of defining all pieces of the
Python model, equivalent JavaScript model, and JavaScript view.

3. Beyond Base IPyWidgets
IPyWidgets as a low-level widget framework has allowed an ecosystem of other libraries
and tools to develop on top of it, dramatically pushing the boundary of what can be
constructed and incorporated into interactive dashboards with relative ease. From general
plotting tools like interactive Matplotlib (ipympl) [8], plotly [9], mpld3 [10], altair [11], and
bqplot [12], to more complex or specialized visualization widgets like pythreejs [13] and
ipyvolume [14] for 3D rendering, ipyleaflet [15] for interactive maps, and ipycytoscape
[16] for interactive networks, there are dozens of packages providing specific components
and bridges to JavaScript visualization libraries. Other libraries such as Panel, Solara, and
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Streamlit provide more holistic integrations between IPyWidgets and other visualization
techniques, which can support production-style dashboards for use outside of Jupyter
alone. Although these libraries address the limited component set included with IPyWid-
gets, another class of Python packages exists in this ecosystem that completely changes and
improves the workflow for defining new widgets. These workflow improvements eliminate
the need for JavaScript toolchains, and in some cases, they also provide the capabilities
from various JavaScript web frameworks. A few we briefly touch on here are AnyWidget,
IPyReact, and IPyVuetify.

AnyWidget [17] is a recent library that has become influential in the past year. New
widgets can be created by simply extending the Python anywidget.AnyWidget class, defining
the class attributes that are to be synced between the Python and JavaScript models using
the traitlets library [18], and providing a string of JavaScript code that specifies the view
rendering logic. Much of the JavaScript MV* boilerplate code is abstracted away, and com-
ponent development can be done without any JavaScript project infrastructure, specialized
cookie cutter, or separate environment setup. Fundamentally, this type of approach allows
even developing widgets directly within a notebook, rather than doing so in a separate
project. AnyWidget is used in another project called IPyReact [19], which brings the ReactJS
library to support component-based design and allows wrapping many existing React
components.

A similar library we focus on in this work that addresses all of the Section 2.3 is IPyVuetify
[20], which brings many of the capabilities of Vue.js into IPyWidgets. Vue.js is a web
component framework similar to React and emphasises a component-driven design, where
a single Vue file can contain an entire component: the template HTML to render, the CSS to
apply, and the JavaScript to provide any interactivity and mechanisms to connect it to the
rest of the application. Attributes within the HTML can be bound to JavaScript variables,
which makes it possible to easily automate the JavaScript model → view updates. IPyVuetify
brings two main advantages: a large library of flexible premade components and the ability
to easily define new components on the fly using Vue to simplify the resulting JavaScript
code.

3.1. Vuetify Component Library

IPyVuetify is an IPyWidgets port of the Vuetify component library, a set of more than
70 premade material design [21] UI widgets. Most of these components support a fairly
extensive set of attributes and properties to change both appearance and functionality.
More importantly, each IPyVuetify widget generally has multiple types of events that can
be observed. A simple example would be a textbox form input component. In IPyWidgets,
the Text widget can mostly only observe a value change when the user changes the text
inside. The IPyVuetify TextField can additionally raise events for key presses, mouse clicks,
the element gaining and losing focus, as well as any HTML event. This level of control can
be useful, for example, when a text value change triggers a heavy processing task. The
interaction is more responsive when the computation is delayed until the field loses focus
or the user has pressed enter, rather than restarting the computation on every letter the
user adds or removes.

All of the default components in IPyWidgets similarly have more flexible versions and many
additional components in IPyVuetify. Figure 4 shows a small sample of default IPyWidgets
on the left with their corresponding IPyVuetify versions on the right. Also pictured at the
bottom is the Vuetify DataTable, which is an example of a component that is not in the
default IPyWidgets. The DataTable allows interactivity to be added to a table supporting
filtering, searching, and both client/server side pagination. Other examples of useful UI ele-
ments IPyVuetify adds are various layout widgets like navigation drawers, dialog windows,
and steppers.
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Figure 4.  A visual comparison of a few IPyWidget components on the upper left and their corresponding
IPyVuetify components on the upper right. The table on the bottom is a DataTable component, an example
of a widget which does not have a default IPyWidgets equivalent.

Finally, the Python API for every IPyVuetify component includes the ability to set CSS class
and style attributes. The former of these provides access to a long list of predefined classes
for easy and consistent control of colors, spacing, and other attributes. For anything not
covered by these classes or separate attributes already part of the Vuetify components, the
style attribute controls the raw in-line CSS applied to the element.

3.2. Custom Vue Components

IPyVuetify provides clean abstractions and mechanisms for creating custom components.
Similar to AnyWidget, IPyVuetify allows defining a Python model class with synced
traitlets, all of which are automatically available within the JavaScript code. In IPyVuetify’s
case, the frontend code is expected to be a string of Vue code or a path to a Vue file, which
allows for fairly self-contained HTML, JavaScript, and styling. The design of Vue.js lends
itself well to reducing boilerplate by allowing bindings in the HTML to directly refer to
Python attribute traitlets, removing both the need to specify the attribute in the JavaScript
model as well as the function to update the view from the model. We discuss this further
in the section on Section 4.1. Program 3 exemplifies this, defining a custom button with a
color change on toggle, where the colors can be modified from Python as well, shown in
Figure 5. In this particular example, both the @click event and :color property directly bind
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import traitlets
import ipyvuetify as v

class ColoredToggleButton(v.VuetifyTemplate):
    color1 = traitlets.Unicode("var(--md-light-blue-500)").tag(sync=True)
    color2 = traitlets.Unicode("#AA6688").tag(sync=True)
    state = traitlets.Bool(True).tag(sync=True)

    @traitlets.default("template")
    def _template(self):
        return """
        <template>
            <v-btn
                width="300px"
                :color="state ? color1 : color2"
                @click="state = !state"
            >Press to change color!</v-btn>
        </template>
        """

button = ColoredToggleButton()

# render the button
button

Program 3.  An example of a custom IPyVuetify component. color1, color2, and state are all part of the
automatically synced models. We can refer to them in the Vue bindings as shown on lines 15 and 16, where
line 16 is an inline event handler that modifies the state property when the button is clicked. Updating
the traitlets on the Python model updates the referenced values in the Vue bindings, e.g. button.color2 =
"var(--md-green-600)" changes the second color programmatically.

to the Python attributes, and no explicit JavaScript is necessary. Finally, IPyVuetify makes
it easy to directly call functions across the Python–JavaScript link by making any Python
functions prefixed with vue*available within JavaScript and any JavaScript functions pre-
fixed withjupyter\_ callable from Python.

Figure 5.  An instance of the ColoredToggleButton from Program 3. Clicking the button switches to color2,
and modifying the Python property color2 immediately updates the button to the new second color.
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Figure 6.  A dashboard for exploring seismic station data embedded with a self-supervised encoder model.
The background layout is a Matplotlib UMAP and a plotly geographic map. Pictured are three draggable
overlay (“windowed”) Matplotlib plots (with colored bars on top) that provide additional details for user-
selected clusters found within the UMAP.

4. IPyOverlay
IPyOverlay is a Python library the authors have implemented and open-sourced¹ that uses
IPyVuetify to provide several wrapper components for other IPyWidgets. These compo-
nents add novel UI capabilities within the IPython ecosystem designed to enable Section 1.1.
Namely, we implement support for rendering widgets on top of other widgets with arbitrary
and controllable positioning. This capability enables techniques such as click-and-drag-
gable overlay windows containing any other widget. An example of IPyOverlay in action
is shown in Figure 6. Throughout this section we will discuss an example use case where
we worked with one of the authors, a seismologist, to construct a dashboard for exploring
models trained on seismic data. This use case led to the development of IPyOverlay as a
library.

The application in this use case is a tool to assist in evaluating how a model internally repre-
sents data from seismic events. Determining properties about a seismic event’s source is a
critical part of analyzing and interpreting observed seismic signals, and large deep neural
networks are increasingly useful for this task. Qualitatively assessing how well trained
models perform on these types of problems, both as a model developer as well as an end
user, requires hypothesis testing that visualization can help make substantially easier.

In this use case, the dashboard is constructed with IPyWidgets and IPyOverlay, taking
advantage of the techniques described in this section, to determine the success of training a
model to meet our domain-specific criteria. More specifically, we use Barlow Twins [22] as a
self-supervised learning objective to try to force a model’s learned representations to reflect
source properties rather than other observational characteristics. For example, different
geographic locations will observe slightly different signals of the same source event based
on geological differences in the paths to those locations from the source. An ideal model
would exhibit path invariance and represent these signals similarly. We use the constructed
visualization tool along with metadata (information other than the timeseries the model
was trained on, e.g. event location, depth, distance) to understand how well the training
objective succeeds in learning invariance to the metadata attributes that are unrelated to
the event source properties. Additionally, we use the dashboard to help end users under-
stand how well the model generalizes to new sources and to explore uncertainty.

¹https://github.com/ORNL/ipyoverlay
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The dashboard includes a UMAP [23] plot of signals embedded by the model under explo-
ration. Each datapoint is a single observed seismic signal, and these data points are then
clustered with DBSCAN [24]. Metadata attributes aggregated by cluster can be explored by
clicking within the UMAP ipympl plot, which aids in determining how much correlation
exists for those attributes within that cluster. Invariant properties would tend to show as
spread out distributions, while attributes that heavily inform a models’ embedding would
tend to cause clustering and produce narrow distributions.

4.1. Implementing in IPyWidgets

Within base IPyWidgets, there is no straightforward way of constructing a layout in which
one widget is overlaid on top of another. Certain other libraries have limited functionality
for this within their own widget instances. For example Matplotlib and plotly can display an
axes within another axes. Furthermore, many libraries support basic tooltips with arbitrary
textual content. Others such as IPyVuetify support certain types of limited “dialog” overlays,
which can contain inner widgets and display overtop of the rest of the webpage, but do
not support the same type of arbitrary positioning necessary for some details-on-demand
approaches.

This limitation seems to arise primarily from the conventional layout mechanisms em-
ployed by many widget libraries, which consists of nesting rows and columns (HBox and VBox
from IPyWidgets) of CSS-flexbox style layouts, or even stricter grid layouts.

These approaches are generally easier to design and work with, and abstract away or
entirely avoid some of the messier CSS layout rules required to render HTML elements
that do not follow an ordered top-to-bottom/left-to-right flow. Fundamentally, to enable
overlay layouts, we implement custom IPyWidget containers that use specific CSS rules to
control for nonlinear layouts, namely relying on absolute positioning (by setting position:
absolute), and each child widget setting left and top CSS properties to have pixel-level
control of its location relative to the parent container. A diagram demonstrating this design
principle is shown in Figure 7.

Figure 7.  Component wrappers provided by IPyOverlay (discussed in the following section) demonstrat-
ing how the positioning works for absolutely positioned child widgets.
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4.2. Embedding IPyWidgets in IPyOverlay Containers

A key enabler is IPyVuetify’s ability to embed other IPyWidgets inside of the template
HTML, allowing us to construct custom layouts of one or more child widgets, similar to HBox
and VBox in IPyWidgets. In effect, we can wrap any other widget with custom HTML, CSS,
and JavaScript. The Vue framework is particularly well suited to concise implementation
with this approach. Vue-flavored template HTML supports binding reactive properties on
attributes (e.g., <div :width="some_JS_variable_name">), meaning we can reference any model
variables in the template syntax, and any time those attributes update, the corresponding
HTML is automatically updated without other code having to monitor and orchestrate
the JavaScript model → view update. Additionally, Vue’s template syntax supports several
programmatic control structures such as looping (v-for) and conditionals (v-if), all of which
combined allows declaratively constructing a bound list of child widgets each wrapped in
custom HTML that reactively responds to list updates and other model property changes. A
simplified example is shown in Program 4.

Our primary contribution with IPyOverlay is an OverlayContainer widget, which creates
a container <div> tag embedding a background (nonoverlay) widget, which can consist
of a more traditional grid-like layout of nested rows/columns of other IPyWidgets, and
absolutely positioned floating <div> tags for each child widget. To support additional
functionalities in any of the child overlay widgets, such as the ability to click and drag to

<template>
    <div class="ipyoverlay-container">
        <!-- iterate and create a div container for every child in the python model
        (children is a list of IPyWidgets) -->
        <div v-for="(child, index) in children"
            class="ipyoverlay-child-container"
            :style="{ left: childPosLeft[index]+'px', top: childPosTop[index]+'px' }"
        >
            <!-- embed the IPyWidget -->
            <jupyter-widget :widget='child' />
        </div>
    </div>
</template>

<script>
module.exports = {
    data() {
        return {
            // any values in the data dictionary can be used reactively within
            // the template HTML
            childPosLeft: [],
            childPosTop: [],
        };
    },
}
</script>

<style>
.ipyoverlay-container {
    display: block;
}
.ipyoverlay-child-container {
    display: block;
    position: absolute;
}
</style>

Program 4.  A simplified version of the Vue template for OverlayContainer. The <div> tag with v-for
reactively produces a <div> tag for each widget in the children list attribute within the Python model. Note,
the style attribute is bound and references the position arrays on lines 21–22. Changing the position of
each overlay widget is done by modifying the corresponding values in these arrays. We keep these arrays
only on the JavaScript side to prevent undue traffic between the Python and JavaScript models from high-
frequency events (e.g., mouse movements) that can cause significant lag in the interface.
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Figure 8.  Three DecoratedWidgetWrapper widgets, each wrapping an ipympl widget with more in-depth
plots detailing distributions of attributes within selected clusters.

move them, we provide a WidgetWrapper (clicking anywhere within begins the drag) and
a DecoratedWidgetWrapper (a bar is rendered above the widget which can be clicked and
dragged to move the entire widget.) An example is shown in Figure 8, where the background
widget is an ipympl Matplotlib plot and three DecoratedWidgetWrapper’s that embed additional
ipympl Matplotlib plots are floating freely above the background.

4.3. Connection Lines

A potential concern with free-floating details-on-demand overlays is the dissociation from
the underlying data: if a user opens more than a couple overlays that correspond to specific
pieces of an underlying visualization, it is easy to lose track of the overlay widgets and
the pieces they are associated with. In the example use case, clicking on a cluster within
the UMAP opens distribution plots for data within that cluster. Because of the number of
clusters, it can be difficult to determine which distribution plot belongs to which cluster.
IPyOverlay adds the ability to render lines connecting overlay widgets to specific pieces of
the background widget (Figure 9).

One end point of the line is always associated with a specified overlay widget and is
automatically updated to the widget’s center whenever it is moved. The other side of the
line can be “attached” in a few different ways, including simply specifying pixel coordinates
within the background, but a significant challenge is locations within dynamic content such
as interactive plots that can be panned and scaled. The conceptual approach to solving
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Figure 9.  The same detail plots as in Figure 8. The overlay widgets have been dragged further out to
show the connection lines to the clusters in the UMAP each is based on.

this for many plotting libraries is to store the x/y data point the connection should point
to, the initial ranges of any plot axes, and current pixel boundaries of the plot within the
container. Then, listening for any events that indicate an axis range has changed, handler
functions can recalculate pixel locations based on the new relative position of the x/y data
point within the new range.

Unfortunately, in practice, the functions necessary to do this for different plotting libraries
can vary substantially as a result of implementation differences. At the time of this writing,
IPyOverlay only supports autoupdating connections for dynamic content inside of ipympl
(Matplotlib) and plotly plots. The authors intend to continue expanding the set of supported
visualization libraries for this particular feature.

4.4. Context Menus

A common form of details-on-demand feature in UI design across most platforms is the
context menu. Generally initiated from a right-click in desktop operating systems and
applications, or tapping and holding on a mobile device, context menus provide a localized
and easy to access palette of possible commands to run at the current location. Complex
dashboards can often have many different possible actions for the user to take, and simply
displaying all of these as buttons may overwhelm or clutter the interface. Alternately, the
actions may be too component/position specific to work well as buttons. Context menus
fill this role by hiding these commands until the user requests them by right-clicking and

July 10, 2024 304



Supporting Greater Interactivity in the IPython Visualization Ecosystem  | Martindale et al., 2024

Figure 10.  An activated context menu providing a selection of commands, which can be expanded well
beyond the single possible action that can be taken from a left-click.

supporting different menus when over different components. Displaying a context menu
similarly requires rendering some form of widget over another – IPyOverlay includes a
ContextMenuArea component that can wrap any widget within an OverlayContainer and define
a context menu with options and event handlers for that specific component. In the example
use case, we add a context menu to the scatter plot to allow a user to optionally choose
between displaying a violin plot with the distributions versus the density plots (Figure 10).

4.5. Example Usage

A minimal code example using IPyOverlay’s containers and connection lines is shown in
Program  5. The example renders an interactive ipympl scatterplot of random data, and
clicking on a point renders a connected overlay window with a bar chart of additional data
associated with the point. A screenshot of this output is shown in Figure 11.

5. Conclusion
The prevalence and utility of Jupyter notebooks in data analysis and scientific workflows
has prompted the development of a community of tools for interactive visualization.
IPyWidgets, the backbone that supports much of this ecosystem, provides the mechanisms
for the kernel to mediate communication between Python and JavaScript. A multitude of
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import ipyoverlay as ui
import matplotlib.pyplot as plt
import numpy as np

%matplotlib widget

# make random data to plot - the first two dimensions are x and y coords
# and the latter 3 are associated data we want to see in inset plots
data = np.random.rand(100, 5)

# plot the scatter data dimensions
fig, ax = plt.subplots()
ax.scatter(x=data[:,0], y=data[:,1])

# make an IPyOverlay Container to wrap the ipympl figure to allow inset plots
container = ui.OverlayContainer(fig.canvas, height="auto", width="auto")

def on_point_click(point_index, event):
    # get the data associated with selected point
    data_point = data[point_index]
    category_bar_data = data_point[2:]

    # create bar chart for selected point
    inset_fig, inset_ax = plt.subplots(figsize=(2,2))
    inset_ax.bar(x=[0,1,2], height=category_bar_data)

    # make a floating IPyOverlay window with the plot and connect it
    # to the selected point's data location
    inset_window = ui.DecoratedWidgetWrapper(ui.display_output(inset_fig), title=str(point_index))
    container.add_child_at_mpl_point(inset_window, ax, data_point[0], data_point[1])

# attach the event handler to add the inset plot when any of the specified
# datapoints are clicked
handler = ui.mpl.event.on_mpl_point_click(ax, on_point_click, data[:,0], data[:,1], tolerance=.1)

container

Program 5.  This snippet wraps an ipympl figure with an OverlayContainer and responds to point clicks
by adding a floating DecoratedWidgetWrapper with an additional plot, connected to the clicked point. Note
that display_output() is a convenience function provided by IPyOverlay that can render a static plot into
a default ipywidgets Output widget.

libraries have built on top of these mechanisms and IPyVuetify in particular offers a collec-
tion of well designed and flexible components to use in dashboards and a straightforward
abstraction for building custom components in projects based on Vue.js. A missing piece
of this ecosystem is the ability to flexibly render localized pop-up windows in support of
details on demand. We developed IPyOverlay to provide this capability through wrapper
components that can arbitrarily position widgets on top of other widgets, opening the door
to more types of visualization and dashboard layouts.
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Figure 11.  An ipympl scatter plot of random data with two inset plots showing the additional data
associated with each clicked point in a bar chart.
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Abstract

While Python excels at prototyping and iterating quickly, it’s not always performant enough
for whole-genome scale data processing. Flyte, an open-source Python-based workflow
orchestrator, presents an excellent way to tie together the myriad tools required to run bioin-
formatics workflows. Flyte is a Kubernetes native orchestrator, meaning all dependencies
are captured and versioned in container images. It also allows you to define custom types
in Python representing genomic datasets, enabling a powerful way to enforce compatibility
across tools. Finally, Flyte provides a number of different abstractions for wrapping these
tools, enabling further standardization. Computational biologists, or any scientists process-
ing data with a heterogeneous toolset, stand to benefit from a common orchestration layer
that is opinionated yet flexible.

Keywords flyte, orchestration, bioinformatics

1. Introduction
Since the sequencing of the human genome [1], and as other wet lab processes have scaled
in the last couple decades, computational approaches to understanding the living world
have exploded. The firehose of data generated from all these experiments led to algorithms
and heuristics developed in low-level high-performance languages such as C and C++. Later
on, industry standard collections of tools like the Genome Analysis ToolKit (GATK) [2] were
written in Java. A number of less performance intensive offerings such as MultiQC [3] are
written in Python; and R is used extensively where it excels: visualization and statistical
modeling. Finally, newer deep-learning models and Rust based components are entering
the fray.

Different languages also come with different dependencies and approaches to dependency
management, interpreted versus compiled languages for example handle this very differ-
ently. They also need to be installed correctly and available in the user’s PATH for execution.
Moreover, compatibility between different tools in bioinformatics often falls back on
standard file types expected in specific locations on a traditional filesystem. In practice
this means searching through datafiles or indices available at a particular directory and
expecting a specific naming convention or filetype.

In short, bioinformatics suffers from the same reproducibility crisis [4] as the broader
scientific landscape. Standardizing interfaces, as well as orchestrating and encapsulating
these different tools in a flexible and future-proof way is of paramount importance on this
unrelenting march towards larger and larger datasets.

2. Methods
Solving these problems using Flyte is accomplished by capturing dependencies flexibly
with dynamically generated container images, defining custom types to enforce at the task
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boundary, and wrapping tools in Flyte tasks. Before diving into the finer points, a brief
primer on Flyte is advised. While the introduction in the docs is a worthwhile read before
continuing, here is a more concise “hello world” example:

from flytekit import task, workflow

@task
def greet() -> str:
  return "Hello"

@task
def say(greeting: str, name: str) -> str:
    return f"{greeting}, {name}!"

@workflow
def hello_world_wf(name: str = "world") -> str:
    greeting = greet()
    res = say(greeting=greeting, name=name)
    return res

Tasks are the most basic unit of work in Flyte. They are pure-Python functions and their
interface is strongly typed in order to compose the workflow. The workflow itself is actually
a domain-specific language that statically compiles a directed-acyclic graph (DAG) based
on the dependencies between the different tasks. There are different flavors of tasks and
workflows as we’ll see later, but this is the core concept.

The following example details a bioinformatics workflow built using Flyte. All code is
drawn from the ever-evolving unionbio Github repository. There are many more datatypes,
tasks and workflows defined there. Questions are always welcome and contributions are of
course encouraged!

2.1. Images

While it’s possible to run Flyte tasks and workflows locally in a Python virtual environment,
production executions in Flyte run on a Kubernetes cluster. As a kubernetes native orches-
trator, all tasks run in their own (typically single-container) pods using whatever image is
specified in the @task decorator. Capturing dependencies in container images has been a
standard for some time now, but this is taken a step further with ImageSpec. ImageSpec
lets you easily define a base image and additional dependencies right alongside your task
and workflow code. Additional dependencies from PyPI, Conda, or apt are supported out-of-
box. Arbitrary RUN commands are also available for base images lacking Debian’s package
manager, or to accomplish virtually anything not currently implemented. Finally, while
envd is the default builder, other backends like a local Docker daemon or even remote
builders are available should the need arise.

These ImageSpec definitions are loosely coupled to your workflow code and are built
automatically when tasks are registered or run on a Flyte cluster. ImageSpec reduces the
complexity inherent in manually authoring a Dockerfile and enables a more streamlined
approach to building images without the need for an additional build step and configuration
update to reference the latest image. This coupling and reduced complexity makes it easier
to build single-purpose images instead of throwing everything into one monolithic image.
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main_img = ImageSpec(
    name="main",
    platform="linux/amd64",
    python_version="3.11",
    packages=["flytekit"],
    conda_channels=["bioconda"],
    conda_packages=[
        "samtools",
        "bcftools",
        "fastp",
        "bowtie2",
        "gatk4",
        "fastqc",
    ],
    registry="docker.io/unionbio",
)

folding_img = ImageSpec(
    name="protein",
    platform="linux/amd64",
    python_version="3.11",
    packages=["flytekit", "transformers", "torch"],
    conda_channels=["bioconda", "conda-forge"],
    conda_packages=[
        "prodigal",
        "biotite",
        "bioPython",
        "py3Dmol",
        "matplotlib",
    ],
    registry="docker.io/unionbio",
)

The main image has a lot of functionality and could arguably be pared down. It contains
a number of very common low-level tools, along with GATK and a couple aligners [5].
The protein image on the other hand, only contains a handful of tools related to a very
specific protein folding and visualization workflow. Unless using a remote builder, these
images are built locally and then pushed to the registry specified. They will persist in the
builder’s local registry and leverage the builder’s cache until cleaned-up. Once built, they
are Open Container Initiative (OCI) compliant container images like any other, allowing you
to compose them as you see fit. The main image could be used as the base for the folding
image, for example. Another very simple but powerful use case would be to Flytify any off-
the-shelf image by simply specifying a Python version and adding flytekit as a package.

Currently, a subset of the full Dockerfile functionality has been reimplemented in Image-
Spec. A typical Dockerfile could include pulling Micromamba binaries, creating and
activating an environment, before finally installing the relevant packages. ImageSpec’s
opinionated approach enables a simpler experience by handling this kind of boilerplate
code behind-the-scenes. ImageSpec is also context aware in the same way docker build is,
meaning a source_root containing a lock or env file can be specified and installed if you
want to keep your local environment in sync. The images submodule of the unionbio repo
puts this in practice, with different source roots used in test and production.

ImageSpecs can be specified in the task decorator alongside any infrastructure
requirements in a very granular fashion:
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@task(
    container_image=folding_img,
    requests=Resources(cpu="4", mem="32Gi", gpu="1"),
    accelerator=GPUAccelerator("nvidia-tesla-v100"),
    )
def predict_structure(seq: str):
  fold_protein(seq)

This image will be built and uploaded when your tasks and workflows are registered to a
Flyte cluster.

2.2. Datatypes

Having rich data types to enforce compatibility at the task boundary is essential to these
wrapped tools working together. Flyte supports arbitrary data types through Python’s
dataclasses library. Genomics pipelines typically pass around one or many large text files
related to the same sample. Data types capturing these files allow us to reason about them
and their metadata more easily across tasks, as well as enforce naming conventions.

Importantly, Flyte abstracts the object store, allowing you to load these assets into pods
wherever is most convenient for your tool. This not only makes it easier to work with these
files, but also safer as you’re working with ephemeral storage during execution instead of a
shared production filesystem. In a shared filesystem, unintended side-effects could mutate
artifacts unrelated to the current production run. This can be mitigated in a number of
ways, such as setting up an empty directory for every experiment or restricting permissions
to files after a run is complete. In an ephemeral setting however, inputs of interest are
materialized at the beginning of the task and any relevant outputs are serialized to a unique
prefix in the object store when the task completes. Any unintended modifications disappear
when the pod is deleted.

Sequencers employ different strategies to produce millions of short strings representing
DNA fragments called reads. One such strategy is single-read sequencing, which produces
one sequencing read per DNA fragment. This is appropriate for simpler analyses such
as profiling or for analyzing less complex genomes. Paired-end sequencing, on the other
hand, produces two reads representing both sequencing directions of the DNA fragment.
This is essential in applications such as “de novo” assembly which involves re-assembling
these reads into a whole genome without a known reference as a guide. It also unlocks the
detection of larger variations, typically longer insertions or deletions.

Regardless of the sequencing strategy, these reads are captured in one or a pair of FastQ
files, an example of which is given below:

@SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=72
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGTTACCCTTAACAACTTAAGGGTTTTCAAATAGA
+SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=72
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9ICIIIIIIIIIIIIIIIIIIIIDIIIIIII>IIIIII/
@SRR001666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=72
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGAAGCAGAAGTCGATGATAATACGCGTCGTTTTATCAT
+SRR001666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=72
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII6IBIIIIIIIIIIIIIIIIIIIIIIIGII>IIIII-I)8I

Two reads are present here, characterized by the nucleobases A, C, T, and G. The other lines
contain metadata and quality information. Here is the dataclass that encapsulates these
files and any salient information about them:
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@dataclass
class Reads(DataClassJSONMixin):

    sample: str
    filtered: bool | None = None
    filt_report: FlyteFile | None = None
    uread: FlyteFile | None = None
    read1: FlyteFile | None = None
    read2: FlyteFile | None = None

    def get_read_fnames(self):
        filt = "filt." if self.filtered else ""
        return (
            f"{self.sample}_1.{filt}fastq.gz",
            f"{self.sample}_2.{filt}fastq.gz",
        )

    def get_report_fname(self):
        return f"{self.sample}_fastq-filter-report.json"

    @classmethod
    def make_all(cls, dir: Path):
      ...

We’re capturing a few important aspects: whether the reads have been filtered and the
results of that operation, as well as if they’re paired-end reads or not. Paired-end reads
will populate the read1 and read2 attributes. If they are unpaired then a single FastQ file
representing a sample’s reads is defined in the uread field. The presence or absence of these
attributes implicitly disambiguates the sequencing strategy.

Additionally, the make_all function body has been omitted for brevity, but it accepts a
directory and returns a list of these objects based on it’s contents. In the other direction, a
get_read_fnames method is defined to standardize naming conventions based on The 1000
Genomes Project guidelines.

FlyteFile, along with FlyteDirectory, represent a file or directory in a Flyte aware context.
These types handle serialization and deserialization into and out of the object store. They
re-implement a number of common filesystem operations like open(), which returns a
streaming handle, for example. Simply returning a FlyteFile from a task will automatically
upload it to whatever object store is defined. This unassuming piece of functionality is one
of Flyte’s key strengths: abstracting data management so researchers can focus on their
task code. Since dataflow in Flyte is a first-class construct, having well defined inputs and
outputs at the task boundary makes authoring workflows that much more reliable.

In order to accomplish sequencing in a sensible timeframe, reads generation is massively
parallelized [6]. This dramatically improves the throughput, but removes crucial informa-
tion regarding the location of those reads. In order to recover that information, the reads are
aligned to a known reference genome, producing an Alignment file, which we also capture
in a dataclass:
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@dataclass
class Alignment(DataClassJSONMixin):

    sample: str
    aligner: str
    format: str | None = None
    alignment: FlyteFile | None = None
    alignment_idx: FlyteFile | None = None
    alignment_report: FlyteFile | None = None
    sorted: bool | None = None
    deduped: bool | None = None
    bqsr_report: FlyteFile | None = None

    def _get_state_str(self):
        state = f"{self.sample}_{self.aligner}"
        if self.sorted:
            state += "_sorted"
        if self.deduped:
            state += "_deduped"
        return state

    def get_alignment_fname(self):
        return f"{self._get_state_str()}_aligned.{self.format}"

    @classmethod
    def make_all(cls, dir: Path):
      ...

Compared to the Reads dataclass, the attributes captured here are of course only relevant
to Alignments. However, the methods that interact with the local filesystem and enforce
naming conventions remain. In the next section, we’ll look at tasks that actually carry out
this alignment.

2.3. Tasks

While Flyte tasks are written in Python, there are a few ways to wrap arbitrary tools.
ShellTasks are one such way, allowing you to define scripts as multi-line strings in Python.
For added flexibility around packing and unpacking data types before and after execution,
Flyte also ships with a subproc_execute function which can be used in vanilla Python tasks.
Finally, arbitrary images can be used via a ContainerTask and avoid any flytekit depen-
dency altogether.

Bowtie2 [7], a fast and memory efficient aligner, is used to carry out the aforementioned
alignments. Before alignment can be carried out efficiently, an index must be generated
from the reference genome. Indices are generated by pre-processing the reference into a
data structure that enables rapid lookup of a match to a given read. Bowtie2 uses an FM-
index which combines the Burrows-Wheeler Transform (BWT) with a suffix array. Broadly
speaking, BWT enables compression of the data while the suffix array allows for efficient
lookup of substrings. Here is a ShellTask creating a bowtie2 index directory from a genome
reference file:
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bowtie2_index = ShellTask(
    name="bowtie2-index",
    debug=True,
    requests=Resources(cpu="4", mem="10Gi"),
    metadata=TaskMetadata(retries=3, cache=True, cache_version=ref_hash),
    container_image=main_img,
    script="""
    mkdir {outputs.idx}
    bowtie2-build {inputs.ref} {outputs.idx}/bt2_idx
    """,
    inputs=kwtypes(ref=FlyteFile),
    output_locs=[
        OutputLocation(var="idx", var_type=FlyteDirectory, location="/tmp/bt2_idx")
    ],
)

This task uses the main_img defined above; it also accepts a FlyteFile and outputs a FlyteDi-
rectory. Another important feature to highlight here is caching, which saves us valuable
compute for inputs that rarely change. Since the alignment index for a particular aligner
only needs to be generated once for a given reference, we’ve set the cache_version to a
hash of the reference’s URI. As long as the reference exists at that URI, this bowtie indexing
task will complete immediately and return that index. To perform the actual alignment, a
regular Python task is used with a Flyte-aware subprocess function to call the bowtie CLI.

@task(container_image=main_img, requests=Resources(cpu="4", mem="10Gi"))
def bowtie2_align_paired_reads(idx: FlyteDirectory, fs: Reads) -> Alignment:
    idx.download()
    ldir = Path(current_context().working_directory)

    alignment = Alignment(fs.sample, "bowtie2", "sam", sorted=False, deduped=False)
    al = ldir.joinpath(alignment.get_alignment_fname())
    rep = ldir.joinpath(alignment.get_report_fname())

    cmd = [
        "bowtie2",
        "-x",
        f"{idx.path}/bt2_idx",
        "-1",
        fs.read1.path,
        "-2",
        fs.read2.path,
        "-S",
        al,
    ]

    result = subproc_execute(cmd)

    # Bowtie2 alignment writes stats to stderr
    with open(rep, "w") as f:
        f.write(result.error)

    alignment.alignment = FlyteFile(path=str(al))
    alignment.alignment_report = FlyteFile(path=str(rep))

    return alignment

Since Python tasks are the default task type, they’re the most feature rich and stable. The
main advantage to using one here is to unpack the inputs and construct the output type.

The resulting alignments are then deduplicated, sorted, recalibrated and reformatted.
While important, these tasks are similarly implemented to the above alignment function
and as such are omitted to focus on the next major step: variant calling. Variant calling has
such a diversity of approaches that any meaningful exploration of the landscape is out of
scope. However, the central purpose is to distill the aligned reads into a set of likely relevant
loci that deviate from the reference. This is accomplished by aggregating information like

July 10, 2024 315

https://docs.flyte.org/en/latest/user\_guide/development\_lifecycle/caching.html\#caching


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

quality scores and the number of reads covering a given location, called a pileup, to come
to consensus around a most likely call.

@task(container_image=main_img_fqn)
def haplotype_caller(ref: Reference, al: Alignment) -> VCF:
    ref.aggregate()
    al.aggregate()
    vcf_out = VCF(sample=al.sample, caller="gatk-hc")
    vcf_fn = vcf_out.get_vcf_fname()
    vcf_idx_fn = vcf_out.get_vcf_idx_fname()

    hc_cmd = [
        "gatk",
        "HaplotypeCaller",
        "-R",
        ref.get_ref_path(),
        "-I",
        al.alignment.path,
        "-O",
        vcf_fn,
    ]

    subproc_execute(hc_cmd)
    
    vcf_out.vcf = FlyteFile(path=vcf_fn)
    vcf_out.vcf_idx = FlyteFile(path=vcf_idx_fn)
    
    return vcf_out

GATK’s HaplotypeCaller is used to perform variant calling by accepting an Alignment and
Reference object and producing a Variant Call Format (VCF) file. VCFs are another common
tabular text file, with each row representing a variant present in the input sequences and
its alternate in the reference, along with a quality score and extensible columns for adding
additional information. Variants can range from single-nucleotide polymorphisms (SNPs)
to much larger structural variations mentioned above. Once variants are called, they can be
further filtered downstream for certain characteristics, or against one of the many curated
databases, to arrive at a set of actionable insights.

3. Results
A real world variant discovery workflow demonstrates how to tie all these disparate parts
together. Starting with a directory containing raw FastQ files, we’ll perform quality-control
(QC), filtering, index generation, alignment, calling, and conclude with a final report of all
the steps. Here’s the code:
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from flytekit import workflow, dynamic, map_task
from flytekit.types.directory import FlyteDirectory
from flytekit.types.file import FlyteFile
from unionbio.tasks.utils import prepare_raw_samples
from unionbio.tasks.fastqc import fastqc
from unionbio.tasks.fastp import pyfastp
from unionbio.tasks.bowtie2 import bowtie2_idx, bowtie2_align_samples
from unionbio.tasks.callers import hc_call_variants
from unionbio.tasks.multiqc import render_multiqc

@workflow
def variant_discovery_wf(seq_dir: FlyteDirectory, ref_path: FlyteFile) -> FlyteFile:
    
    # Generate FastQC reports and check for failures
    fqc_out = fastqc(seq_dir=seq_dir)
    samples = prepare_raw_samples(seq_dir=seq_dir)

    # Map out filtering across all samples and generate indices
    filtered_samples = map_task(pyfastp)(rs=samples)

    # Explicitly define task dependencies
    fqc_out >> filtered_samples

    # Generate a bowtie2 index or load it from cache
    bowtie2_idx = bowtie2_index(ref=ref_path)

    # Generate alignments using bowtie2
    sams = bowtie2_align_samples(idx=bowtie2_idx, samples=filtered_samples)

    # Call variants
    vcfs = hc_call_variants(ref=ref_path, als=sams)

    # Generate final multiqc report with stats from all steps
    return render_multiqc(fqc=fqc_out, filt_reps=filtered_samples, sams=sams, vcfs=vcfs)

To help make sense of the flow of tasks, here is a screenshot from the Flyte UI that offers a
visual representation of the different steps:

FastQC [8], an extremely common QC tool, is wrapped in a ShellTask and starts off the
workflow by generating a report for all FastQ formatted reads files in a given directory. That
directory is then turned into Reads objects via the prepare_raw_samples task. Those samples
are passed to fastp for adapter removal and filtering of duplicate or low quality reads. FastP
[9] is wrapped in a Python task which accepts a single Reads object. This task is then used in
a map task to parallelize the processing of however many discrete samples were present in

Figure 1.  Table listing the various tasks of the workflow alongside task type, status, completion time,
and runtime
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Figure 2.  Workflow DAG showing the tasks as color-coded nodes with connections between them repre-
senting dependencies

the input directory. Flyte relies on the flow of strongly-typed inputs and outputs to assemble
the workflow; since there is no implicit dependency between filtering and QC, we make this
relationship explicit with the “>>” operator.

Once pre-processing is complete, alignment can take place. First, bowtie2_index generates
an index if one is not already cached. Since the bowtie2 alignment task processes samples
one at a time, it was wrapped in a dynamic workflow to process a list of inputs. Dynamics
are another parallelism construct, similar to map tasks with some key differences: they are
more flexible than map tasks at the expense of some efficiency. Similarly, variant calling is
performed across all samples using HaplotypeCaller. Lastly, MultiQC [3], produces a final
report of all the different steps in the workflow. Certain task definitions are omitted for the
sake of cogency, they are all fully-defined in the unionbio repo.

Despite being a fairly parsimonious workflow, it’s important to highlight how many differ-
ent languages are seamlessly integrated. The preprocessing tools are written in Java and C/
C++. Alignment is carried out with a mix of Perl and C++. HaplotypeCaller is implemented
purely in Java. Finally, the reporting tool is implemented in Python. While this simplicity
affords easy understanding of task-flow from the code, the Flyte console provides excellent
visualizations to best understand it’s structure:

Finally, it’s helpful to inspect a timeline of the execution which highlights a few things.
Since this workflow was run several times over the course of capturing these figures, the
fastqc task was cached in previous runs. It’s also clear from this figure which tasks were
run in parallel in contrast to those which had dependencies on upstream outputs. Finally,
the overall runtime is broken down into it’s separate parts. Since this was run on test data,
everything executed fairly quickly.

4. Conclusion
Different steps in a bioinformatics pipeline often require tools with significantly different
characteristics. As such, different languages are employed where their strengths are best
leveraged. Regardless of which language or framework is used, ImageSpec captures those
dependencies in an OCI-compliant image for use in Flyte workflows and beyond in a very
ergonomic way. Defining dataclasses with FlyteFiles and additional metadata frees the data
flow from the trappings of a traditional filesystem, while Flyte handles serialization so we

Figure 3.  Execution timeline listing individual task runtimes in context of overall workflow runtime
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can easily operate in a cloud native paradigm. With dependencies handled in a robust
way and the data interface standardized, wrapping arbitrary tools in Flyte tasks produces
reusable and composable components that behave predictably. Tying all of this into a
common orchestration layer presents an enormous benefit to the developer experience and
consequently the reproducibility and extensibility of the research project as a whole.
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Abstract

Rough path theory is a branch of mathematics arising out of stochastic analysis. One of the
main tools of rough path analysis is the signature, which captures the evolution of an unpara-
metrised path including the order in which events occur. This turns out to be a useful tool
in data science applications involving sequential data. RoughPy is our new Python package
that aims change the way we think about sequential streamed data, by viewing it through the
lens of rough paths. In RoughPy, data is wrapped in a stream object which can be composed
and queried to obtain signatures that can be used in analysis. It also provides a platform for
further exploration of the connections between rough path theory and data science.

Keywords sequential data, unparametrised paths, time series, rough paths, signatures,
data science, machine learning, signature kernels, Log-ODE method

1. Introduction
Sequential data appears everywhere in the modern world: text, finance, health records,
radio (and other electromagnetic spectra), sound (and speech), etc. Traditionally, these
data are tricky to work with because of the exponential complexity and different scales
of the underlying process. Until recently, with the development of transformers and large
language models, it has been difficult to capture the long-term pattern whilst also capturing
the short-term fine detail. Rough path theory gives us tools to work with sequential, ordered
data in a mathematically rigorous way, which should provide a means to overcome some of
the inherent complexity of the data. In this paper, we introduce a new package RoughPy for
working with sequential data through the lens of rough path theory, where we can perform
rigourous analyses and explore different ways to understand sequential data.

Rough paths arise in the study of controlled differential equations (CDEs), which generalise
ordinary differential equations (ODEs) and stochastic differential equations [1], [2]. These
are equations of the form d𝑌𝑡 = 𝑓(𝑌𝑡, d𝑋𝑡), subject to an initial condition 𝑌0 = 𝑦0, that model
a non-linear system driven by a input path 𝑋. One simple CDE turns out to be critical to the
theory:

d𝑆𝑡 = 𝑆𝑡 ⊗ d𝑋𝑡 𝑆0 = 𝟏. (1)

The solution of this equation is called the signature of 𝑋. It is analogous to the exponential
function for ODEs, in that the solution of any CDE can be expressed in terms of the signature
of the driving path. When the path 𝑋 is sufficiently regular, the signature can be computed
directly as a sequence of iterated integrals. In other cases, we can still solve CDEs if we are
given higher order data that can be used in place of the iterated integrals. A path equipped
with this higher order data is called a rough path.

The signature turns out to be a useful summary of sequential data. It captures the order of
events but not the necessarily the rate at which these events occur. The signature is robust
to irregular sampling and provides a fixed-size view of the data, regardless of how many

July 10, 2024 320

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/DXWY3560
https://orcid.org/0000-0001-5971-7418
https://orcid.org/0000-0001-5971-7418
mailto:sam.morley@maths.ox.ac.uk
mailto:sam.morley@maths.ox.ac.uk
https://orcid.org/0000-0002-9972-2809
https://orcid.org/0000-0002-9972-2809
mailto:terry.lyons@maths.ox.ac.uk
mailto:terry.lyons@maths.ox.ac.uk
mailto:sam.morley@maths.ox.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


RoughPy  | Morley & Lyons, 2024

observations are used to compute it. This means the signature can be a useful feature map
to be used in machine learning for sequential data. There are numerous examples of using
signatures of analysing sequential data outlined in Section 2.

Besides signatures, there are two other rough path-based methods that have found their
way into data science in recent years. These are the signature kernel and neural CDEs. Both
of these enjoy the same robustness of the signature, and expand the range of applications
of rough path-based methods. We give a short overview of these methods in Section 1.2.

There are several Python packages for computing signatures of sequential data, including
esig [3], iisignature [4], and signatory [5]. These packages provide functions for computing
signatures from raw, structured data presented in an 𝑛 × 𝑑 array, where 𝑑 is the dimension
of the stream and 𝑛 is the number of samples. This means the user is responsible for
interpreting the data as a path and arranging the computations that need to be done.

RoughPy is a new package for working with sequential data and rough paths. The design
philosophy for this package is to shift the emphasis from simply computing signatures on
data to instead work with streams. A stream is a view of some data as if it were a rough
path, that can be queried over intervals to obtain a signature. The actual form of the data is
abstracted away in favour of stream objects that closely resemble the mathematics. The aim
is to change the way that users think about sequential data and advance the understanding
of path-like data analysis.

On top of the streams, RoughPy also provides concrete implementations for elements of the
various algebras associated with rough path analysis. These include free tensor algebras,
shuffle tensor algebras, and Lie algebras (Section 1.1). This allows the user to easily manip-
ulate signatures, and other objects, in a more natural manner. This allows us to quickly
develop methods by following the mathematics.

The paper is organised as follows. In the remainder of this section, we give a brief overview
of the mathematics associated with rough path theory, and provide some additional detail
for the signature kernel and neural CDEs. In Section 2 we list several recent applications of
signatures and rough path-based methods in data science applications. These applications
should serve to motivate the development of RoughPy. Finally, in Section 3 we give a more
detailed overview of the RoughPy library, the types and functions it contains, and give an
example of how it can be used.

RoughPy is open source (BSD 3-Clause) and available on GitHub https://github.com/datasig-
ac-uk/roughpy.

1.1. Mathematical background

In this section we give a very short introduction to signatures and rough path theory that
should be sufficient to inform the discussion in the sequel. For a far more comprehensive
and rigorous treatment, we refer the reader to the recent survey [6]. For the remainder of
the paper, we write 𝑉  for the vector space ℝ𝑑, where 𝑑 ≥ 1.

A path in 𝑉  is a continuous function 𝑋 : [𝑎, 𝑏] → 𝑉 , where 𝑎 < 𝑏 are real numbers. For the
purposes of this discussion, we shall further impose the condition that all paths are of
bounded variation. The value of a path 𝑋 at some parameter 𝑡 ∈ [𝑎, 𝑏] is denoted 𝑋𝑡.

The signature of 𝑋 is an element of the (free) tensor algebra. For 𝑛 ≥ 0, the 𝑛th tensor
power of 𝑉  is defined recursively by 𝑉 ⊗0 = ℝ, 𝑉 ⊗1 = 𝑉 , and 𝑉 ⊗𝑛+1 = 𝑉 ⊗ 𝑉 ⊗𝑛 for 𝑛 > 1. For
example, 𝑉 ⊗2 is the space of 𝑑 × 𝑑 matrices, and 𝑉 ⊗3 is the space of 𝑑 × 𝑑 × 𝑑 tensors. The
tensor algebra over 𝑉  is the space

T((𝑉 )) = {𝒙 = (𝑥0, 𝑥1,…) : 𝑥𝑗 ∈ 𝑉 ⊗𝑗 ∀𝑗 ≥ 0} (2)
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equipped with the tensor product ⊗ as multiplication. The tensor algebra is a Hopf algebra,
and comes equipped with an antipode operation 𝛼𝑉 : T((𝑉 )) → T((𝑉 )). It contains a group
G(𝑉 ) of elements under tensor multiplication and the antipode. The members of G(𝑉 ) are
called group-like elements. For each 𝑛 ≥ 0, we write T𝑛(𝑉 ) for the truncated tensor algebra of
degree 𝑛, which is the space of all 𝒙 = (𝑥0, 𝑥1,…) such that 𝑥𝑗 = 0 whenever 𝑗 > 𝑛. Similarly,
we write T>𝑛((𝑉 )) for the subspace of elements 𝒙 = (𝑥0, 𝑥1,…) where 𝑥𝑗 = 0 whenever 𝑗 ≤
𝑛, which is an ideal in T((𝑉 )) and T𝑛(𝑉 ) = T((𝑉 ))/T>𝑛((𝑉 )). The truncated tensor algebra is
an algebra, when given the truncated tensor product, obtained by truncating the full tensor
product.

The signature S(𝑋)𝑠,𝑡 of a path 𝑋 : [𝑎, 𝑏] → 𝑉  over a subinterval [𝑠, 𝑡) ⊆ [𝑎, 𝑏] is S(𝑋)𝑠,𝑡 =
(1, S1(𝑋)𝑠,𝑡,…) ∈ G(𝑉 ) where for each 𝑚 ≥ 1, S𝑚(𝑋)𝑠,𝑡 is given by the iterated (Riemann-
Stieltjes) integral

S𝑚(𝑋)𝑠,𝑡 = ∫…∫
𝑠<𝑢1<𝑢2<…<𝑢𝑚<𝑡

d𝑋𝑢1 ⊗ d𝑋𝑢2 ⊗…⊗ d𝑋𝑢𝑚 . (3)

The signature respects concatenation of paths, meaning S(𝑋)𝑠,𝑡 = S(𝑋)𝑠,𝑢 ⊗ S(𝑋)𝑢,𝑡 for any
𝑠 < 𝑢 < 𝑡. This property is usually called Chen’s relation. Two paths have the same signature
if and only if they differ by a tree-like path [7]. The signature is translation invariant, and it
is invariant under reparametrisation.

The dual of T((𝑉 )) is the shuffle algebra Sh(𝑉 ). This is the space of linear functionals
T((𝑉 )) → ℝ and consists of sequences (𝜆0, 𝜆1,…) with 𝜆𝑘∈ (𝑉 ∗)⊗𝑘 and where 𝜆𝑘 = 0 for all
𝑘 larger than some 𝑁 . (Here 𝑉 ∗ denotes the dual space of 𝑉 . In our notation 𝑉 ∗ ≅ 𝑉 .)
The multiplication on Sh(𝑉 ) is the shuffle product, which corresponds to point-wise multi-
plication of functions on the path. Continuous functions on the path can be approximated
(uniformly) by shuffle tensors acting on G(𝑉 ) on the signature. This is a consequence of
the Stone-Weierstrass theorem. This property is sometimes referred to as universal non-
lineararity.

There are several Lie algebras associated to T((𝑉 )). Define a Lie bracket on T((𝑉 )) by the
formula [𝒙, 𝒚] = 𝒙 ⊗ 𝒚 − 𝒚 ⊗ 𝒙, for 𝒙, 𝒚 ∈ T((𝑉 )). We define subspaces 𝐿𝑚 of T((𝑉 )) for each
𝑚 ≥ 0 inductively as follows: 𝐿0 = {𝟎}, 𝐿1 = 𝑉 , and, for 𝑚 ≥ 1,

𝐿𝑚+1 = span{[𝒙, 𝒚] : 𝒙 ∈ 𝑉 , 𝒚 ∈ 𝐿𝑚}. (4)

The space of formal Lie series ℒ(𝑉 ) over 𝑉  is the subspace of T((𝑉 )) containing sequences of
the form (ℓ0, ℓ1, ⋯), where ℓ𝑗 ∈ 𝐿𝑗 for each 𝑗 ≥ 0. Note that ℒ(𝑉 ) ⊆ T>0(𝑉 ). For any 𝒙 ∈ T(𝑉 )
we define

exp(𝒙) =∑
∞

𝑛=0

𝒙⊗𝑛

𝑛!
and log(𝟏 + 𝒙) =∑

∞

𝑛=1

(−1)𝑛−1

𝑛
𝒙⊗𝑛. (5)

For any path 𝑋, we have LogSig(𝑋)𝑠,𝑡 := log(S(𝑋)𝑠,𝑡) ∈ ℒ(𝑉 ), and we call this the log-signa-
ture of 𝑋 over [𝑠, 𝑡). This is an alternative representation of the path, but doesn’t enjoy the
same unievrsal non-linearity of the signature.

1.2. Rough paths in data science

Now we turn to the applications of rough path theory to data science. Our first task is
to form a bridge between sequential data and paths. Consider a finite, ordered sequence
{(𝑡1, 𝒙1,…, 𝑡𝑁 , 𝒙𝑁)} of observations, where 𝑡𝑗 ∈ ℝ, and 𝒙𝑗 ∈ 𝑉 . (More generally, we might
consider 𝒙𝑗 ∈ ℒ(𝑉 ) instead. That is, data that already contains higher-order information.
In our language, it is a genuine rough path.) We can find numerous paths that interpolate
these observations; a path 𝑋 : [𝑡0, 𝑡𝑁 ] → 𝑉  such that, for each 𝑗, 𝑋𝑡𝑗 = 𝒙𝑗. The simplest inter-
polation is to take the path that is linear between adjacent observations.
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Once we have a path, we need to be able to compute signatures. For practical purposes, we
truncate all signatures (and log-signatures) to a particular degree 𝑀 , which we typically
call the depth. The dimension of the ambient space 𝑑 is usually called the width. Using
linear interpolation, we can compute the iterated integrals explicitly using a free tensor
exponential of the difference of successive terms:

Sig𝑀([𝑡𝑗, 𝑡𝑗+1)) = exp𝑀(𝒙𝑗+1 − 𝒙𝑗) :=∑
𝑀

𝑗=0

1
𝑗!
(𝒙𝑗+1 − 𝒙𝑗)

⊗𝑗. (6)

Here, and in the remainder of the paper, we shall denote the empirical signature over
an interval 𝐼  by Sig(𝐼) and the log-signature as LogSig(𝐼). We can compute the signature
over arbitrary intervals by taking the product of the these terms, using the multiplicative
property of the signature.

1.2.1. The signature transform:

Most of the early applications of rough paths in data science, the (truncated) signature was
used as a feature map [8]. This provides a summary of the path that is independent of
the parameterisation and the number of observations. Unfortunately, the signature grows
geometrically with truncation depth. If 𝑑 > 1, then the dimension of T𝑀(𝑉 ) is

∑
𝑀

𝑚=0
𝑑𝑚 = 𝑑𝑀+1 − 1

𝑑 − 1
(7)

The size of the signature is a reflection of the complexity of the data, where data with a
higher complexity generally needs a higher truncation level and thus a larger signature. It
is worth noting that this still represents a significant compression of stream information in
many cases.

For some applications, it might be possible to replace the signature with the log-signature.
The log-signature is smaller than the signature, but we lose the universal non-linearity
property of the signature. Alternatively, we might turn to other techniques that don’t
require a full calculation of the signature (such as the signature kernel below). As the
connection between rough paths and data science becomes more mathematically mature,
we will likely find new ways to use the signature without requiring its full size.

1.2.2. Signature kernels:

Kernel methods are useful tools for learning with sequential data. Mathematically, a kernel
on a set 𝑊  is a positive-definite function 𝑘 : 𝑊 ×𝑊 → ℝ. Kernels are often quite easy to
evaluate because of the kernel trick, which involves embedding the data in a inner product
space, with a feature map, in which the kernel can be evaluated by simply taking an inner
product. Informally, kernels measure the similarity between two points. They are used in a
variety of machine learning tasks such as classification.

The signature kernel is a kernel induced on the space of paths by combining the signature
with an inner product defined on the tensor algebra [9]. The theory surrounding the signa-
ture kernel has been expanded several times since their introduction [10], [11]. Typically,
the inner product on T((𝑉 )) will itself by derived from an inner product on 𝑉 , extended to
the tensor algebra.

Signatures are infinite objects, so we can’t simply evaluate inner products on the tensor
algebra. Fortunately, we can approximate the signature kernel by taking inner products of
truncated signatures. Even better, it turns out that, in certain cases, the signature kernel
can be realised as the solution to a partial differential equation (PDE) of Goursat type. This
means the full signature kernel can be computed from raw data without needing to compute
full signatures [12].
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In fact, in recent preprint, it has been shown that there are higher order solvers for
signature kernels by rewriting the kernel solution of a system of PDEs of Goursat type
[13]. A critical part of their method involves the adjoint of both left and right free tensor
multiplication, which are not available in any current package for computing signatures.
These functions are provided by RoughPy.

1.2.3. Neural controlled differential equations:

Neural CDEs are a method for modelling irregular time series. We consider CDEs of the form
d𝑌𝑡 = 𝑓𝜃(𝑌𝑡) d𝑋𝑡 (8)

where 𝑓𝜃 is a neural network. We can treat the path 𝑌  as “hidden state” that we can tune
using data to understand the relationship between the driving path 𝑋𝑡 and some response.
Neural CDEs can be regarded as a continuous-time analogue of a recurrent neural network
[14].

Neural CDEs initially showed some promising results on several benchmarks but now lag
behind current state-of-the-art approaches to time series modelling. The latest iteration of
neural CDEs are the recently introduced Log-neural controlled differential equations [15],
which make use of the Log-ODE method for solving rough differential equations in order
to boost the performance of neural CDEs.

2. Current applications of rough paths
In this section we enumerate several applications where rough paths have been used to
develop or improve methods. This list presented here is certainly not exhaustive. In addition
to the literature cited below, there are numerous additional references and worked exam-
ples, in the form of Jupyter notebooks, available on the DataSig website (https://datasig.ac.
uk/examples).

2.1. Detecting interference in radio astronomy data

Radio frequency interference (RFI) is a substantial problem in the field of radio astronomy.
Even small amounts of RFI can obscure the faint signals generated by distant stellar objects
and events. The problem of identifying RFI in a signal falls into a class of semi-supervised
learning tasks called novelty (or anomaly) detection. Rough path methods have been applied
to develop a novelty detection framework based on rough path methods to detect RFI
in radio astronomy data from several radio telescopes [16]. Their result show that their
framework is effective at detecting even faint RFI within the test data. This work is based
on a general novelty detection framework [17].

Signatures kernels have also been used for a similar problem of detecting malware by
inspecting the streaming tree of processes on a computer system T. Cochrane, P. Foster,
V. Chhabra, M. Lemercier, T. Lyons, and C. Salvi [18]. Their method uses a support vector
machine classifier to identify processes that are malicious compared to “normal” behaviour
learned via training on a corpus of normality.

2.2. Tracking mood via natural language processing

One application of rough paths in natural language processing has been in the domain of
mental health [19], [20]. In this work, the authors present a model for identifying changes
in a person’s mood based on their online textual content. Many mental health conditions
have symptoms that manifest in the (textual) expression, so this could be a powerful tool
for mental health professionals to identify changes in patients and intervene before the
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state develops. Their model achieves state-of-the-art performance vs existing models on
two datasets.

2.3. Predicting battery cell degradation

Another recent application of signatures is to predict the degradation of lithium-ion cells
[21]. They use signature features to train a model that can accurately predict the end of life
of a cell using relatively low-frequency sampling compared to existing models. They also
observed that the performance at higher frequency was comparable to other models.

2.4. Prediction of sepsis in intensive care data

One of the first effective demonstrations of the utility of signatures and rough paths based
methods in healthcare was in the 2019 PhysioNet challenge [22]. In this contest, teams were
invited to develop models to predict sepsis in patients from intensive care unit data. In this
challenge, a team utilising signatures to enhance predictive power placed first in the official
phase of the challenge. Since then, signatures and other rough path based approaches have
been used in several other clinical contexts [20], [23], [24]. Clinical data is often irregularly
sampled and often exhibits a high degree of missingness, but it can also be very high-
frequency and dense. Rough path based methods can handle these data in an elegant way,
and retain the structure of long and short term dependencies within the data.

2.5. Human action recognition

The task of identifying a specific action performed by a person from a short video clip is
very challenging. Signatures derived from landmark data extracted from the video has been
used to train classification models that achieved state-of-the-art performance compared
with contemporary models [25], [26], [27]. (See also preprint papers [28], [29].) Also in the
domain of computer vision, signatures have been used to produce lightweight models for
image classification [30] and in handwriting recognition tasks [31].

3. RoughPy
RoughPy is a new library that aims to support the development of connections between
rough path theory and data science. It represents a shift in philosophy from simple compu-
tations of signatures for sequential data, to a representation of these data as a rough path.
The design objectives for RoughPy are as follows:

1. provide a class that presents a rough path view of some source of data as a rough
path, exposing methods for querying the data over intervals to get a signature or log-
signature;

2. provide classes and functions that allow the users to interact with the signatures and
other algebraic objects in a natural, mathematical manner;

3. all operations should be differentiable and objects should be interoperable with
objects from machine learning, such as TensorFlow (JAX) and PyTorch.

The first two objectives are simple design and implementation problems. The final objective
presents the most difficulty, especially interoperability between RoughPy and common
machine learning libraries. There are array interchange formats for NumPy-like arrays,
such as the Python Array API standard [32] and the DLPack protocol [33]. These provide
part of the picture, but in order for them to be fully supported, RoughPy must support a
variety of compute backends such as CUDA (NVidia), ROCm/HIP (AMD), and Metal (Apple).

RoughPy is a substantial library with numerous components, mostly written in C++ with
a Python interface defined using Pybind11 [34]. The original design of the library closely
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followed the C++ template libraries libRDE and libalgebra [35], although it has seen many
iterations since.

In the remainder of this section, we discuss some of the core components of RoughPy, give
an example of using RoughPy, and discuss the future of RoughPy.

3.1. Free tensors, shuffle tensors, and Lie objects

In order to properly support rough path based methods and allow users to write code based
on mathematical concepts, we provide realisations of several algebra types. The algebras
provided in RoughPy are FreeTensor, ShuffleTensor, and Lie, which define elements of a
particular free tensor algebra, shuffle tensor algebra, and Lie algebra respectively. Each of
these algebras is initialized with a width, depth, and scalar coefficient type, encapsulated
in a Context object.

In addition to the algebra classes, RoughPy provides a number of supporting functions, in-
cluding antipodes and half-shuffle products for FreeTensor/ShuffleTensor objects, and adjoint
operators for left free tensor multiplication. These are operations that are frequently used
in the theory of rough paths, and will likely be necessary in developing new applications
later (as in the signature kernels).

RoughPy algebras are designed around a flexible scalar ring system that allows users to
perform calculations with different accuracy, or derive expressions by using polynomial
coefficients. For most applications, single or double precision floating point numbers will
provide a good balance between performance and accuracy. (Double precision floats are
the default.) When more precision is required, rational coefficients can be used instead.
These are backed by GMP rationals for fast, arbitrary precision rational arithmetic [36].
Polynomial coefficients can be used to derive formulae by performing calculations. This is
a powerful technique for understanding the terms that appear in the result, particularly
whilst testing and debugging.

3.2. Intervals

RoughPy is very careful in the way it handles intervals. All intervals in RoughPy are half-
open, meaning that they include one end point but not the other; they are either clopen
[𝑎, 𝑏) := {𝑡 : 𝑎 ≤ 𝑡 < 𝑏} or opencl (𝑎, 𝑏] := {𝑡 : 𝑎 < 𝑡 ≤ 𝑏}. Besides the type (clopen or opencl), all
intervals must provide methods for retrieving the infimum (𝑎 in the above notation) and
the supremum (𝑏 above) of the interval as double precision floats. This is enforced by means
of an abstract base class Interval. The main concrete interval types are RealInterval, an
interval with arbitrary real endpoints, and DyadicInterval, as described below. For brevity,
we shall only consider clopen intervals.

A dyadic interval is an interval 𝐷𝑛
𝑘 := [𝑘/2𝑛, (𝑘 + 1)/2𝑛), where 𝑘, 𝑛 are integers. The number

𝑛 is often described as the resolution of the interval. The family of dyadic intervals of a fixed
resolution 𝑛 partition the real line so that every real number 𝑡 belongs to a unique dyadic
interval 𝐷𝑘

𝑛. Moreover, the family of all dyadic intervals have the property that two dyadic
intervals are either disjoint or one contains the other (including the possibility that they
are equal).

In many cases, RoughPy will granularise an interval into a dyadic intervals. The dyadic
granularisation of [𝑎, 𝑏) with resolution 𝑛 is [𝑘1/2𝑛, 𝑘2/2𝑛) where 𝑘1 = max{𝑘 : 𝑘/2𝑛 ≤ 𝑎} and
𝑘2 = max{𝑘 : 𝑘/2𝑛 ≤ 𝑏}. In effect, the dyadic granularisation is the result of “rounding” each
end point to the included end of the unique dyadic interval that contain it.
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3.3. Streams

Streams are central to RoughPy. A RoughPy Stream is a rough path view of some underlying
data. It provides two key methods to query the object over intervals to retrieve either a
signature or log-signature. Importantly, once constructed, the underlying data is inacces-
sible except by querying via these methods. Streams are designed to be composed in various
ways, such as by concatenation, in order to build up more complex streams. A Stream is
actually a (type-erasing) wrapper around a more minimal StreamInterface abstract class.

We construct streams by a factory function associated with each different StreamInterface,
which might perform some compression of the underlying data. For example, a basic
StreamInterface is the LieIncrementStream, which can be constructed using the associated
from_increments factory function (a static method of the class), which accepts an 𝑛 × 𝑑 array
of increment data. These data will typically be the differences between successive values
of the data (but could also include higher-order Lie terms). This is similar to the way that
libraries such as esig, iisignature, and signatory consume data.

RoughPy streams cache the result of log-signature queries over dyadic intervals so they
can be reused in later calculations. To compute the log-signature over any interval 𝐼 , we
granularise at a fixed stream resolution 𝑛 to obtain the interval 𝐼 = [𝑘1/2𝑛, 𝑘2/2𝑛), and then
compute

LogSig(𝐼) = log
(
((∏
𝑘2−1

𝑘=𝑘1

exp(LogSig(𝐷𝑛
𝑘 ))
)
)). (9)

The LogSig(𝐷𝑛
𝑘 ) terms on the right-hand-side are either retrieved from the cache, or

computed from the underlying source. This is essentially the Campbell-Baker-Hausdorff
formula applied to the log-signatures at the finest level. In practice, we can actually reduce
the number of terms in the product, by merging complementary dyadic intervals that
appear in the granularisation. We further optimise by using a fused multiply-exponential
(𝐴exp(𝐵)) operation.

Signatures are always computed by first computing the log-signature and then exponentiat-
ing. Directly computing the signature as a product of exponentials of (cached) log-signatures
might accumulate enough numerical errors to drift slightly from a group-like tensor. That is,
the result might not actually be a true signature. Taking the logarithm and then exponenti-
ating back to obtain the signature has the effect of correcting this numerical drift from a
true signature.

Aside from the basic LieIncrementStream, there are several other implementations of the
StreamInterface currently available in RoughPy. The BrownianStream approximates Brownian
motion by generating normal distributed increments over dyadic intervals of arbitrary
resolution on demand, forming a reasonable approximation of true Brownian motion. The
ExternalDataStream is an interface for loading data from various external sources, such as
from a database or specialised data format. Currently, only sound files are supported but
we plan to extend support for other sources as the need arises. This will certainly include
“online” data sources such as computer peripheral devices (e.g. microphones).

The other main StreamInterface implementation is the PiecewiseAbelianStream, which is
an important construction from CDE. A piecewise Abelian path, or log-linear path, is an
example of a smooth rough path, which generalises piecewise linear approximations of an
arbitrary stream. Formally, an Abelian path 𝑌  is a pair ([𝑎, 𝑏), 𝒚) where 𝑎 < 𝑏 and 𝒚 ∈ ℒ(𝑉 ).
The log-signature over an arbitrary interval [𝑢, 𝑣) ⊆ [𝑎, 𝑏) is given by

LogSig(𝑌 )𝑢,𝑣 =
𝑣 − 𝑢
𝑏 − 𝑎

𝒚. (10)
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A piecewise Abelian path is the concatenation of finitely many Abelian paths with adjacent
intervals. For any rough path 𝑋 and partition {𝑎 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 𝑏} there is a piecewise
Abelian approximation for this path given by

{([𝑡𝑗−1, 𝑡𝑗), LogSig(𝑋)𝑡𝑗−1,𝑡𝑗) : 𝑗 = 1,…,𝑁}. (11)

This construction turns out to be vital for computing signature kernels [32] and for solving
CDEs [2], [15]. In particular, this construction can be used to compress data at some degree,
which can the be used in computations at a higher degree.

3.4. Example

In this section we show a very simple example of how to use RoughPy to construct a stream
and compute a signature. This example is similar to the first few steps of the tutorial found
in the RoughPy documentation. RoughPy can be installed using pip, where prebuilt wheels
are available for Windows, Linux, and MacOs:

pip install roughpy

We refer the reader to this documentation for much more detail. We will construct a stream
in ℝ26 by taking each letter in a word, “scipy” in this example, as the increments of a path:

import numpy as np

text = "scipy"
increments = np.zeros((5, 26), dtype="int8")
for i, c in enumerate(text):
    increments[i, ord(c) - 97] = 1

Now we import RoughPy and construct a Stream using the factory mentioned above. One
other critical ingredient is the algebra Context, which is used to set up a consistent set
of algebra objects with the desired width (26), truncation level (2), and coefficient type
(Rational).

import roughpy as rp

ctx = rp.get_context(width=26, depth=2,
      coeffs=rp.Rational)
stream = rp.LieIncrementStream.from_increments(
         increments, ctx=ctx)

Now we can compute the signature of the stream over the whole domain of the stream [0, 4]
by omitting the interval argument:

sig = stream.signature()
print(sig)
# { 1() 1(3) 1(9) 1(16) 1(19) 1(25) 1/2(3,3)
#   1(3,9) 1(3,16) 1(3,25) 1/2(9,9) 1(9,16)
#   1(9,25) 1/2(16,16) 1(16,25) 1(19,3) 1(19,9)
#   1(19,16) 1/2(19,19) 1(19,25) 1/2(25,25) }

The first term of the signature is always 1, and the empty parentheses indicate the empty
tensor word. The next five terms correspond to the counts of each unique letter that
appears, the number in parentheses indicates the letter (with a being 1). The final terms
indicate the order in which each pair of letters appear in the word. For instance, the term
1(3,9) indicates that a c appears before an i.
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Remark 1.

It turns out that most words in the English language can be distinguished using only
their level 2 signatures. The first level signatures groups words into anagrams. The
second level signature counts the occurrences of each ordered pair of letters. There
are relatively few words that require level 3 data. From the standard Linux dictionary,
containing around 80,000 words, there are two pairs of words that require the level
3 terms: “toot” and “otto”, and “naan” and “anna”. This is shown in the RoughPy docu-
mentation. Similar patterns can be observed in other languages too, including French,
Spanish, German, Russian, and Lithuanian.

This is only the beginning of the story. From here, we can use the signatures to compute the
similarity between streams, via the signature kernel for instance, or used as features in a
variety of machine learning problems. More detailed examples of how to use signatures in
data science are given on the DataSig website https://datasig.ac.uk/examples.

3.5. The future of RoughPy

RoughPy is continuously evolving. At time of writing, the current version uses libalgebra
and libalgebra-lite (libalgebra with fewer templates) for computations. Unfortunately, this
made it difficult to achieve the differentiability and computation device support that we
want. We are currently changing the way we implement vectors and algebras to provide
the support for on-device computation that we want. Making the operations differentiable
is crucial for machine learning, and will be the biggest challenge.

Long term, we need to expand support for signature kernels and CDEs. As applications of
these tools grow in data science, we will need to devise new methods for computing kernels,
or solving CDEs. We will also build a framework for constructing and working with linear
maps, and homomorphisms. For example, one very useful linear map is the extension of
the log function to the whole tensor algebra.

4. Conclusions
The use of rough path theory in data science is rapidly expanding and provides a different
way to view sequential data. Signatures, and other methods arising from rough path theory,
are already used in a wide variety of applications, with great effect. The next steps in
overcoming the difficulty in modeling sequential data will require a change of perspective.
Viewing these data through the lens of rough path theory might provide this change.

RoughPy is a new Python library for working with streamed data using rough path methods.
It is designed to abstract away the form and source of data so that analysis can be performed
by querying path-like objects. This approach is much closer to the mathematics. It also
allows users to interact with the various algebras associated with rough paths (free tensor
algebra, shuffle tensor algebra, Lie algebra) in a natural way. RoughPy is under active
development, and a long list of improvements and extensions are planned.
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Abstract

The quest for more efficient and faster deep learning models has led to the development of
various alternatives to Transformers, one of which is the Mamba model. This paper provides
a comprehensive comparison between Mamba models and Transformers, focusing on their
architectural differences, performance metrics, and underlying mechanisms. It analyzes and
synthesizes findings from extensive research conducted by various authors on these models.
The synergy between Mamba models and the SciPy ecosystem enhances their integration
into science. By providing an in-depth comparison using Python and its scientific ecosystem,
this paper aims to clarify the strengths and weaknesses of Mamba models relative to Trans-
formers. It offers the results obtained along with some thoughts on the possible ramifications
for future research and applications in a range of academic and professional fields.

Keywords Mamba Models, Solid State Models, Transformers, Flash Attention, LLMs

1. Introduction
The rapid advancements in deep learning have led to transformative breakthroughs across
various domains, from natural language processing to computer vision. However, the quest
for more efficient and scalable models remains a central challenge, especially when dealing
with long sequences exhibiting long-range dependencies. Transformers, while achieving
remarkable performance in numerous tasks, often suffer from high computational com-
plexity and memory usage, particularly when handling long sequences.

This paper delves into the emerging field of State Space Models (SSMs) as a promising
alternative to Transformers for efficiently capturing long-range dependencies in sequential
data. We provide a comprehensive comparison between the recently developed Mamba
model, based on SSMs, and the widely adopted Transformer architecture, highlighting their
architectural differences, performance characteristics, and underlying mechanisms.

We begin by exploring the fundamental principles of SSMs, emphasizing their ability to rep-
resent and model continuous-time systems through a latent state vector. We then introduce
the HiPPO framework, which extends SSMs to effectively handle long-range dependencies
by leveraging the properties of orthogonal polynomials. This leads us to the discretization
of continuous-time SSMs into discrete-time representations, enabling their implementation
as recurrent models.

Building upon this foundation, we introduce the Structured State Space (S4) model, which
addresses the computational limitations of traditional SSM implementations by employing
a novel parameterization and efficient algorithms. S4′s Normal Plus Low-Rank (NPLR)
decomposition allows for stable and efficient diagonalization of the state matrix, leading to
significant improvements in computational complexity.
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We then discuss the Mamba model, which leverages the selective SSM approach to capture
long-range dependencies in sequences. The Mamba architecture combines aspects of RNNs,
CNNs, and classical state space models, offering a unique blend of efficiency and expres-
sivity.

The paper then presents a detailed comparison of Mamba and Transformer architectures,
highlighting their core components, computational characteristics, and performance impli-
cations. We demonstrate the advantages of Mamba in terms of computational efficiency,
memory usage, and sequence handling, underscoring its potential for tackling complex
scientific and industrial problems.

Finally, we explore the potential applications and future directions of Mamba models, par-
ticularly in the context of scientific computing and data analysis. We highlight the synergy
between Mamba and the SciPy ecosystem, underscoring its ability to enhance the efficiency
and scalability of scientific computing workflows and drive novel scientific discoveries.

2. State Space Models
The central goal of machine learning is to develop models capable of efficiently processing
sequential data across a range of modalities and tasks [1]. This is particularly challenging
when dealing with long sequences, especially those exhibiting long-range dependencies
(LRDs) – where information from distant past time steps significantly influences the
current state or future predictions.  Examples of such sequences abound in real-world
applications, including speech, video, medical, time series, and natural language. However,
traditional models struggle to effectively handle such long sequences.

Recurrent Neural Networks (RNNs) [2], often considered the natural choice for sequential
data, are inherently stateful and require only constant computation per time step. However,
they are slow to train and suffer from the well-known “vanishing gradient problem”,
which limits their ability to capture LRDs. Convolutional Neural Networks (CNNs) [3],
while efficient for parallelizable training, are not inherently sequential and struggle with
long context lengths, resulting in more expensive inference. Transformers [4], despite their
recent success in various tasks, typically require specialized architectures and attention
mechanisms to handle LRDs, which significantly increase computational complexity and
memory usage.

A promising alternative for tackling LRDs in long sequences is State Space Models (SSMs)
[5], a foundational mathematical framework deeply rooted in diverse scientific disciplines
like control theory and computational neuroscience. SSMs provide a continuous-time rep-
resentation of a system’s state and evolution, offering a powerful paradigm for capturing
LRDs. While SSMs and S4s does not prevent the vanishing gradient problem but it reduces
the impact with the help of HiPPO framework and NPLR Parametrization. They represent a
system’s behavior in terms of its internal state and how this state evolves over time. SSMs
are widely used in various fields, including control theory, signal processing, and computa-
tional neuroscience.

2.1. Continuous-time Representation

The continuous-time SSM describes a system’s evolution using differential equations.  It
maps a continuous-time input signal  𝑢(𝑡) to an output signal  𝑦(𝑡)  through a latent
state 𝑥(𝑡).  The state is an internal representation that captures the system’s history and
influences its future behavior.

The core equations of the continuous-time SSM are:

• State Evolution:
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𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (1)

• Output Generation:

  
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (2)

where:

• 𝑥(𝑡) is the state vector at time 𝑡, belonging to a 𝑁 -dimensional space.
• 𝑢(𝑡) is the input signal at time 𝑡.
• 𝑦(𝑡) is the output signal at time 𝑡.
• 𝐴 is the state matrix, controlling the evolution of the state vector 𝑥(𝑡).
• 𝐵 is the control matrix, mapping the input signal 𝑢(𝑡) to the state space.
• 𝐶 is the output matrix, projecting the state vector 𝑥(𝑡) onto the output space.
• 𝐷 is the command matrix, directly mapping the input signal 𝑢(𝑡) to the output. (For

simplicity, we often assume 𝐷 = 0, as 𝐷𝑢(𝑡) can be viewed as a skip connection.)

This system of equations defines a continuous-time mapping from input 𝑢(𝑡) to output
𝑦(𝑡) through a latent state 𝑥(𝑡). The state matrix 𝐴 plays a crucial role in determining the
dynamics of the system and its ability to capture long-range dependencies.

2.2. HiPPO Framework for Long-Range Dependencies

Despite their theoretical elegance, naive applications of SSMs often struggle with long
sequences. This is due to the inherent limitations of simple linear differential equations in
capturing long-range dependencies (LRDs). To overcome this, the High-Order Polynomial
Projection Operator (HiPPO) [6] framework provides a principled approach for designing
SSMs specifically suited for LRDs.

HiPPO focuses on finding specific state matrices 𝐴 that allow the state vector 𝑥(𝑡) to
effectively memorize the history of the input signal 𝑢(𝑡). It achieves this by leveraging the
properties of orthogonal polynomials. The HiPPO framework derives several structured
state matrices, including:

• HiPPO-LegT (Translated Legendre): Based on Legendre polynomials, this matrix
enables the state to capture the history of the input within sliding windows of a fixed
size.

• HiPPO-LagT (Translated Laguerre): Based on Laguerre polynomials, this matrix
allows the state to capture a weighted history of the input, where older information
decays exponentially.

• HiPPO-LegS (Scaled Legendre): Based on Legendre polynomials, this matrix captures
the history of the input with respect to a linearly decaying weight.

2.3. Discrete-time SSM: Recurrent Representation

To apply SSMs on discrete-time data sequences (𝑢0, 𝑢1, …), it’s necessary to discretize the
continuous-time model. This involves converting the differential equations into difference
equations, where the state and input are defined at discrete time steps. One common
discretization method is the bilinear transform, also known as the Tustin method. This
transform approximates the derivative 𝑥′(𝑡) by a weighted average of the state values at two
consecutive time steps, introducing a step size 𝛿 that represents the time interval between
samples.

SSMs Figure 1 typically require integration within a broader neural network architecture
due to their limited inherent capabilities. From a high-level perspective, SSMs exhibit func-
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tional similarities to linear Recurrent Neural Networks (RNNs). Both architectures process
sequential input tokens, transforming and combining the previous hidden state represen-
tation with the embedding of the current input. This iterative processing characteristic
aligns SSMs with the sequential nature of RNNs.

SSMs have 4 sets of matrices and parameters to process the input namely
Δ, 𝐴, 𝐵, 𝐶 (3)

where:

• Δ acts as a gating factor, selectively weighting the contribution of matrices 𝐴 and 𝐵
at each step. This allows the model to dynamically adjust the influence of past hidden
states and current inputs.

• 𝐴 represents the state transition matrix. When modulated by Δ, it governs the propa-
gation of information from the previous hidden state to the current hidden state.

• 𝐵 denotes the input matrix. After modulation by Δ, it determines how the current
input is integrated into the hidden state.

• 𝐶 serves as the output matrix. It maps the hidden state to the model’s output, effec-
tively transforming the internal representations into a desired output space.

The discretization technique facilitates the transformation of continuous differential equa-
tions into discrete time-step representations, leveraging the Δ matrix to decompose the
infinitely continuous process into a discrete time-stepped process, thereby reducing com-
putational complexity. In this approach, the 𝐴 and 𝐵 steps undergo discretization through
the following equations:

𝐴 = exp(Δ𝐴) (4)

Figure 1.  This diagram illustrates the architecture of the Selective State Space Model (SSM). Each input
sequence (blue boxes) is processed by an SSM layer (green) after being multiplied by matrix 𝐵. The
state space module (SSM) handles sequential data and captures long-range dependencies, after which the
output (yellow boxes) undergoes a transformation by matrix 𝐶. The final outputs (red boxes) are combined
to produce the model’s output 𝑦. This setup emphasizes the modular and repetitive nature of SSM layers,
highlighting their role in sequence modeling.
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𝐵 = (Δ𝐴)−1(exp(Δ𝐴) − 𝐼) ⋅ Δ𝐵 (5)

This discretization scheme effectively reduces the continuous differential equation to a
series of discrete time steps, enabling numerical approximations to be computed iteratively.
By segmenting the continuous process into finite increments, the computational burden is
alleviated, rendering the problem more tractable for numerical analysis and simulation.

2.4. Training SSMs

While the recurrent representation provides a computationally efficient way to perform
inference with an SSM, it is not optimal for training due to its sequential nature.  To
overcome this, SSM leverages the connections between linear time-invariant (LTI) SSMs and
convolution. The convolutional representation allows for efficient parallel training using
Fast Fourier Transform (FFT) algorithms. However, the main challenge lies in computing the
SSM convolution kernel 𝐾. Computing it naively with 𝐿 successive matrix multiplications
by  𝐴  results in 𝑂(𝑁2 ∗ 𝐿) operations and 𝑂(𝑁𝐿) memory – a significant computational
bottleneck for long sequences.

The state-space models (SSMs) compute the output using a linear recurrent neural network
(RNN) architecture, which operates on a hidden state Δ. In this formulation, the hidden
state propagates through a linear equation of the following form:

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡 (6)

where

• ℎ𝑡 is hidden state matrix at time step t
• 𝑥𝑡 is input vector at time t

The initial hidden state ℎ0 is computed as:

ℎ0 = 𝐴ℎ−1 + 𝐵𝑥0 = 𝐵𝑥0 (7)

Subsequently, the hidden state at the next time step, ℎ1, is obtained through the recursion:

ℎ1 = 𝐴ℎ0 + 𝐵𝑥1 = 𝐴𝐵 (8)

The output 𝑌𝑡 is then calculated from the hidden state ℎ𝑡 using the following linear trans-
formation:

𝑦𝑡 = 𝐶ℎ𝑡 (9)

• C is the output control matrix
• 𝑦𝑡 is output vector at time t
• ℎ𝑡 is the Internal hidden state at time t

𝑦0 = 𝐶ℎ0 = 𝐶𝐵𝑥0

𝑦1 = 𝐶ℎ1 = 𝐶𝐴𝐵𝑥0 + 𝐶𝐵𝑥1

𝑦2 = 𝐶𝐴2𝐵𝑥0 + 𝐶𝐴𝐵𝑥1 + 𝐶𝐵𝑥2

⋮
𝑦𝑡 = 𝐶𝐴𝑡𝐵𝑥0 + 𝐶𝐴𝑡−1𝐵𝑥1 + … + 𝐶𝐴𝐵𝑥𝑡−1 + 𝐶𝐵𝑥𝑡

(10)

𝑌 = 𝐾 ⋅ 𝑋 (11)

where :

• 𝑋 is the input matrix i.e. [𝑥0, 𝑥1, …, 𝑥𝐿]
• 𝐾 = (𝐶𝐵, 𝐶𝐴𝐵, …, 𝐶𝐴𝐿−1𝐵)

This linear RNN architecture effectively captures the temporal relationships present in
sequential data and thus enabling the model to learn and ensure the propagation of the
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key-relevant information through the recurrent connections. This linear formulation has
led to scalable implementations, which in turn take use of matrix operations’ computing
efficiency.

3. S4: A Structured State Space Model
The theoretical advantages of State Space Models (SSMs) [5] for handling long sequences,
particularly their ability to capture long-range dependencies, make them a promising alter-
native to traditional sequence models. However, the computational limitations of existing
SSM implementations, such as the LSSL, hinder their widespread adoption. The Structured
State Space (S4) model aims to overcome these limitations by introducing novel parameter-
ization [7] and efficient algorithms that preserve the theoretical strengths of SSMs [8] .

4. Diagonalization Problem
The core computational bottleneck in SSMs stems from repeated matrix multiplication by
the state matrix 𝐴 when calculating the convolution kernel 𝐾. If 𝐴 were a diagonal matrix,
this computation would become significantly more tractable. Diagonal matrices allow for
efficient power calculations as well as multiplication by a vector, resulting in a time com-
plexity of 𝑂(𝑁) for 𝑁  dimensions.

Diagonalization involves finding a change of basis that transforms 𝐴 into a diagonal form.
However, this approach faces significant challenges when 𝐴 is non-normal. Non-normal
matrices have complex eigenstructures, which can lead to several problems:

• Numerically unstable diagonalization: Diagonalizing non-normal matrices can be
numerically unstable, especially for large matrices. This is because the eigenvectors
may be highly sensitive to small errors in the matrix, leading to large errors in the
computed eigenvalues and eigenvectors.

• Exponentially large entries: The diagonalization of some non-normal matrices, in-
cluding the HiPPO matrices, can involve matrices with entries that grow exponentially
with the dimension 𝑁 . This can lead to overflow issues during computation and render
the diagonalization infeasible in practice.

Therefore, naive diagonalization of non-normal matrices in SSMs is not a viable solution
for efficient computation.

5. The S4 Parameterization: Normal Plus Low-Rank (NPLR)
S4 overcomes the challenges of directly diagonalizing non-normal matrices by introducing
a novel parameterization [7].  It decomposes the state matrix A into a sum of a normal
matrix and a low-rank term. This decomposition allows for efficient computation while
preserving the structure necessary to handle long-range dependencies. The S4 parameter-
ization is expressed as follows:

• SSM convolution kernel

𝐾 = 𝜅𝐿(𝐴, 𝐵, 𝐶) med med med for med med med𝐴 = 𝑉 Λ𝑉 ∗ − 𝑃𝑄𝑇 (12)

where:

• V is a unitary matrix that diagonalizes the normal matrix.
• Λ is a diagonal matrix containing the eigenvalues of the normal matrix.
• P and Q are low-rank matrices that capture the non-normal component.
• These matrices HiPPO - 𝐿𝑒𝑔𝑆, 𝐿𝑒𝑔𝑇 , 𝐿𝑎𝑔𝑇  all satisfy 𝑟 = 1 or 𝑟 = 2.
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This decomposition allows for efficient computation because:

• Normal matrices are efficiently diagonalizable: Normal matrices can be diagonal-
ized stably and efficiently using unitary transformations.

• Low-rank corrections are tractable: The low-rank term can be corrected using the
Woodbury identity, a powerful tool for inverting matrices perturbed by low-rank
terms.

6. S4 Algorithms and Complexity
S4 leverages its NPLR parameterization to develop efficient algorithms for computing both
the recurrent representation (𝐴) and the convolutional kernel (𝐾).

6.1. S4 Recurrence

The bilinear transform is used to discretize the state matrix in order to construct the S4
recurrent representation. The important thing to note is that, because of the Woodbury
identity, the inverse of a DPLR matrix does not result in any change in the matrix. Therefore,
the discretized state matrix is the product of two DPLR matrices, allowing for efficient
matrix-vector multiplication in O(N) time.

6.2. Parallel Associative Scan

The linear recurrent behavior inherent in the previous formulation is not efficiently imple-
mentable on GPU architectures, which favor parallel computing paradigms. This limitation
renders convolutions inefficient in such environments. To address this challenge, the par-
allel associative scan technique is employed, which introduces a prefix sum-like operation
to scan for all prefix sums. Although inherently sequential, this approach leverages an effi-
cient parallel algorithm model to parallelize the SSM convolution, resulting in a significant
performance boost. The parallel associative scan method exhibits linear time and space
complexity, making it a computationally efficient solution.

SSM

𝑦𝑡 = 𝐶𝐴𝑡𝐵𝑥0 + 𝐶𝐴𝑡−1𝐵𝑥1 + … + 𝐶𝐴𝐵𝑥𝑡−1 + 𝐶𝐵𝑥𝑡 (13)

Selective SSM

𝑦𝑡 = 𝐶0𝐴𝑡𝐵0𝑥0 + 𝐶1𝐴𝑡−1𝐵1𝑥1 + …
input -dependent𝐵 and𝐶 matrix

(14)

By leveraging the parallel associative scan technique [9], the selective SSM formulation can
be efficiently implemented on parallel architectures, such as GPUs. This approach enables
the exploitation of the inherent parallelism in the computation, leading to significant
performance gains, particularly for large-scale applications and time-series data processing
tasks.

6.3. S4 Convolution

S4′s convolutional representation is computed through a series of steps:

1. SSM Generating Function: Instead of directly computing the convolution kernel
𝐾, S4 calculates its spectrum by evaluating its truncated generating function. The
generating function allows for efficiently expressing powers of 𝐴 as a single matrix
inverse.

2. Woodbury Correction: The Woodbury identity is used to correct the low-rank term
in the generating function, reducing the problem to evaluating the generating func-
tion for a diagonal matrix.
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3. Cauchy Kernel: The generating function for a diagonal matrix is equivalent to com-
puting a Cauchy kernel, which is a well-studied problem with efficient, numerically
stable algorithms.

This process reduces the complexity of computing the convolution kernel 𝐾 to 𝑂(𝑁 + 𝐿)
operations and 𝑂(𝑁 + 𝐿) memory, significantly improving upon the LSSL’s complexity.

6.4. S4 Architecture Details

The S4 layer, as defined by its NPLR parameterization, implements a mapping from a 1-D
input sequence to a 1-D output sequence. To handle multiple features, the S4 architecture
utilizes 𝐻 independent copies of the S4 layer, each processing one feature dimension. These
outputs are then mixed using a position-wise linear layer, similar to a depthwise-separable
convolution. This architecture allows for efficient computation while preserving the ability
to capture relationships between different features.

Non-linear activation functions are typically added between S4 layers to enhance the
model’s expressivity, further paralleling the structure of CNNs. Thus, the overall deep S4
model resembles a depthwise-separable CNN, but with global convolution kernels that
effectively capture long-range dependencies.

In summary, S4 offers a structured and efficient approach to SSMs, overcoming the limita-
tions of previous implementations while preserving their theoretical strengths. Its NPLR
parameterization allows for stable and efficient computation, while its efficient algorithms
significantly reduce computational complexity. S4′s ability to handle multiple features and
its resemblance to CNNs further contribute to its versatility and potential as a powerful
general sequence modeling solution.

7. Mamba Model Architecture
One Mamba Layer [10] Figure 2 is composed of a selective state-space module and several
auxiliary layers. Initially, a linear layer doubles the dimensionality of the input token em-
bedding, increasing the dimensionality from 64 to 128. This higher dimensionality provides
the network with an expanded representational space, potentially enabling the separation
of previously inseparable classes. Subsequently, a canonical 1D convolution layer processes
the output of the previous layer, manipulating the dimensions within the linearly upscaled
128-dimensional vector. This convolution layer employs the SiLU (Sigmoid-weighted
Linear Unit) activation function [11]. The output of the convolution is then processed by
the selective state-space module, which operates akin to a linear recurrent neural network
(RNN).

Mamba then performs a gated multiplication operation. The input is passed through
another linear layer and an activation function, and the resulting output is multiplied
element-wise with the output of the S4 module. The authors’ intuition behind this operation
is that the multiplication serves as a measure of similarity between the output of the
SSM module, which contains information from previous tokens, and the embedding of
the current token. Finally, a linear layer reduces the dimensionality from 128 back to 64.
To construct the complete Mamba architecture, multiple layers are stacked on top of one
another, similar to the Transformer architecture, where Transformer layers are stacked
sequentially.
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Figure 2.  This diagram represents the Mamba architecture, illustrating the flow from input through
convolutional and sequence transformation layers, with nonlinear activation functions, to produce the
final output via linear projection.

8. Key Differences Between Mamba and Transformer Architec-
tures
In this section, we present a detailed comparison of the Mamba and Transformer architec-
tures. We focus on their core components, computational characteristics, and performance
implications. Visualizations and equations are provided to illustrate these differences
clearly.

Self attention, feed forward Neural Networks, normalization, residual layers and so on.

8.1. Architecture Overview

8.1.1. Transformer Architecture:

Transformers Figure  3 rely heavily on attention mechanisms to model dependencies
between input and output sequences. A better understanding of the code will be of great
help [12].

The core components include:

• Multi-Head Self-Attention: Allows the model to focus on different parts of the input
sequence.

• Position-wise Feed-Forward Networks: Applied to each position separately.
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Figure 3.  This diagram illustrates the transformer model architecture, featuring encoder and decoder
layers with multi-head attention mechanisms, positional encoding, and feed-forward networks, culminat-
ing in output probabilities via a softmax layer.

• Positional Encoding: Adds information about the position of each token in the
sequence, as Transformers lack inherent sequential information due to the parallel
nature of their processing.

8.1.2. Mamba Architecture:

Mamba models Figure  2 are based on Selective State Space Models (SSMs), combining
aspects of RNNs, CNNs, and classical state space models. Key features include:
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• Selective State Space Models: Allow input-dependent parameterization to selectively
propagate or forget information.

• Recurrent Mode: Efficient recurrent computations with linear scaling.
• Hardware-aware Algorithm: Optimized for modern hardware to avoid inefficiencies

from the Flash Attention 2 Paper.

8.2. Key Differences

8.2.1. 1. Attention Mechanisms vs. Selective State Space Models:

Transformers use multi-head self-attention to capture dependencies within the sequence:

Attention(𝑄, 𝐾, 𝑉 ) = softmax(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (15)

Where 𝑄, 𝐾, and 𝑉  are the query, key, and value matrices, respectively, and 𝑑 is the dimen-
sion of the key vectors.

Mamba Models replace attention with selective state space parameters that change based
on the input:

ℎ′(𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥(𝑡) (16)

𝑦(𝑡) = 𝐶ℎ(𝑡) (17)

Here, 𝐴, 𝐵, and 𝐶 are state space parameters that vary with the input, allowing for efficient
handling of long sequences without the quadratic complexity of attention mechanisms.

8.2.2. 2. Computational Complexity:

Feature Architecture Complexity Inference Speed Training Speed

Transformer Attention-based High O(n) O(n²)

Mamba SSM-based Lower O(1) O(n)

8.2.3. 3. Sequence Handling and Memory Efficiency:

Transformers require a cache of previous elements to handle long-range dependencies,
leading to high memory usage.

Mamba Models utilize selective state spaces to maintain relevant information over long
sequences without the need for extensive memory caches, providing a more memory-
efficient solution.

Mamba integrates selective state spaces directly into the neural network architecture. The
selective mechanism allows the model to focus on relevant parts of the input dynamically.

There are other competing architectures that aim to replace or complement Transformers,
such as Retentive Network [13], Griffin [14], Hyena [15], and RWKV [16]. These architec-
tures propose alternative approaches to modeling sequential data, leveraging techniques
like gated linear recurrences, local attention, and reinventing recurrent neural networks
(RNNs) for the Transformer era.

9. Mamba’s Synergy with Scipy
Scipy [17] provides a robust ecosystem for scientific computing in Python, offering a
wide range of tools and libraries for numerical analysis, signal processing, optimization,
and more. This ecosystem serves as a fertile ground for the development and integration
of Mamba, facilitating its training, evaluation, and deployment in scientific applications.
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Leveraging Scipy’s powerful data manipulation and visualization capabilities, Mamba
models can be seamlessly integrated into scientific workflows, enabling in-depth analysis,
rigorous statistical testing, and clear visualization of results.

The combination of Mamba’s language understanding capabilities and Scipy’s scientific
computing tools opens up new avenues for exploring large-scale scientific datasets com-
monly encountered in scientific research domains such as astronomy, medicine, and
beyond, extracting insights, and advancing scientific discoveries.

9.1. Potential Applications and Future Directions:

• Efficient Processing of Large Scientific Datasets: Mamba’s ability to handle long-
range dependencies makes it well-suited for analyzing and summarizing vast amounts
of scientific data, such as astronomical observations, medical records, or experimental
results, thereby reducing the complexity and enabling more efficient analysis.

• Enhancing Model Efficiency and Scalability: Integrating Mamba with Scipy’s opti-
mization and parallelization techniques can potentially improve the efficiency and
scalability of language models, enabling them to handle increasingly larger datasets
and more complex scientific problems.

• Advancing Scientific Computing through Interdisciplinary Collaboration: The
synergy between Mamba and Scipy fosters interdisciplinary collaboration between
natural language processing researchers, scientific computing experts, and domain-
specific scientists, paving the way for novel applications and pushing the boundaries
of scientific computing.

The diverse range of models as U-Mamba [18], Vision Mamba[19], VMamba [20], Mam-
baByte [21]and Jamba [22], highlights the versatility and adaptability of the Mamba
architecture. These variants have been designed to enhance efficiency, improve long-range
dependency modeling, incorporate visual representations, explore token-free approaches,
integrate Fourier learning, and hybridize with Transformer components.

10. Conclusion
Mamba models present a compelling alternative to Transformers for processing long
sequences, particularly in scientific computing. Their use of selective state spaces delivers
linear time complexity and superior memory efficiency, making them faster and less
resource-intensive than Transformers for lengthy data. Mamba’s flexible architecture en-
ables easy integration with scientific workflows and scalability. However, their complexity
demands further research to streamline implementation and encourage wider adoption.
While not yet a complete replacement for Transformers, Mamba models offer a powerful
tool for analyzing complex scientific data where efficiency and integration with scientific
tools are paramount, making their continued development crucial.
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Abstract

Within the Army Corps of Engineers (USACE), there is a need to evaluate tradespaces.
Tradespace datasets are the result of large parameter sweeps run over numerous design
options and can consist of thousands or even millions of design configurations and the corre-
sponding performance metrics. Because of the immense size of these datasets, the ability
to effectively visualize the data is essential for proper evaluation. At the USACE Engineer
Research & Development Center (ERDC), an easy-to-use plotting tool known as the Trade-
space Holistic Exploration & Insight Application (THEIA) has been developed for visualizing
this complex tradespace data related to the acquisitions process. THEIA was developed using
Python libraries including Panel, Param, Holoviews, Bokeh, and Plotly. When combined, these
libraries offer a wide range of widgets and plots that allow the user to visualize their data in
multiple ways. Additionally, users can easily save plots, export findings, and utilize multiple
data files at once. THEIA is also capable of importing tabular data while presenting options
to customize visualizations and help the end-user make informed decisions.

Keywords python, panel, holoviews, holoviz, param, plotly, bokeh, tradespace

1. Background/Motivation
Within the United States Army Corps of Engineers (USACE) the evaluation of tradespaces has
become an important capability. Tradespaces, in essence, are extensive datasets generated
from broad parameter sweeps across a multitude of design options. These datasets can
encompass thousands, if not millions of design configurations, each accompanied by its
respective performance metrics. This process results in an immense amount of data, which,
while rich in information, presents a challenge in terms of analysis and interpretation.
Because of the colossal size of these datasets, the ability to visualize them effectively is not
just beneficial, but essential for comprehensive evaluation. This visualization is particularly
crucial when it come to the acquisitions process, where understanding the implications of
each design choice can have far-reaching consequences. To address this need, the USACE
Engineer Research & Development Center (ERDC) has developed a user-friendly plotting
tool, named the Tradespace Holistic Exploration & Insight Application (THEIA).

2. What is a tradespace?
In the context of this paper, the term tradespace is a combination of the terms “parameter
space” and “tradeoff”. A tradespace dataset is a dataset that shows tradeoffs associated with
certain design choices in a parameter space. Oftentimes, these datasets are generated by
high performance computing (HPC) jobs called parameter sweeps.
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Figure 1.  This is a simple example of a tradespace in the context of car shopping. When shopping for a
new vehicle, buyers often compile a list of pros and cons based on certain vehicle types. The dataset the
buyer creates is, in essence, a tradespace. For example, a buyer may want to maximize potential range,
while minimizing vehicle cost. By analyzing this tradespace, the buyer would be able to see that opting
for a sedan provides both the best price and the best potential range.

3. Methods
THEIA’s primary function is to provide a means of visualizing intricate tradespace data,
thereby facilitating a more thorough understanding of the various design configurations
and their corresponding performance metrics. It’s a robust tool built upon several Python
libraries, including Panel, Bokeh, Param, HoloViews, and Plotly. The integration of these
libraries equips THEIA with a diverse array of widgets and plots, enabling users to visualize
their data in various ways simultaneously. Panel, Param, and HoloViews are all a part of
the HoloViz suite of Python packages, which allows for excellent synchronization between
them.

3.1. Panel

Panel [1] is an open-source library for easily building tools, dashboards, and complex
applications, all within Python. Its role in THEIA is to define the layout of the application, in
an easy, extensible way. This is done by utilizing Panel’s built-in visual components. Compo-
nents are the building blocks of apps built on Panel. The primary components utilized by
THEIA are Widgets, Panes, Layouts, and Templates.

• Widgets are generally small components like sliders, text fields, or checkboxes.
• Panes are data wrappers that enable rendering of that data in multiple ways.
• Layouts allow for the coupling of various components like widgets or panes so that

they can be rendered together using the Bokeh library.
• Templates are components that allow the rendering of Panel objects in an HTML

document.

3.2. Param

Param [2] is an open-source library built for handling user-modifiable parameters, argu-
ments, and attributes that control your code. These capabilities are used in THEIA to
monitor for user inputs and changes while maintaining a far simpler codebase. This is
done by leveraging Parameters in special Parameterized classes, which provide features
like type-checking and default values. THEIA leverages these classes to define acceptable
input types and values as well as handle errors without large amounts of boilerplate code.

3.3. Holoviews

HoloViews [3] is an open-source library built for data analysis and visualization with small
amounts of code. This library is the backend that provides many of the plots in THEIA.
HoloViews takes a different approach to plotting than many other popular libraries. Instead
of focusing purely on visualization, HoloViews plots are defined in a way that supports
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analysis in addition to visualization. This is done by coupling raw data with metadata in
a way that allows for immediate visualization rendering as data changes. HoloViews also
leverages some of Bokeh’s capabilities when rendering specific plots.

3.4. Plotly Express

Plotly Express [4] is a high-level interface to Plotly. It’s built to produce easily styleable
figures with minimal code. HoloViews leverages this library within THEIA to render supple-
mentary plots like the parallel plot. Plotly Express is an optimal choice because it often
provides highly interactive plots by default.

4. Results
Together, these scientific Python libraries allowed the Rapid Application Development team
at ERDC to develop a robust visualization tool capable of running in the browser without
being reliant on an internet connection. Additionally, using THEIA requires no coding. Users
simply upload a CSV file using the built-in navigator, and THEIA does the rest. The following
screenshots show THEIA’s capabilities using the iris dataset.

THEIA also allows user to select from various plot types and color themes, which is a vital
feature when working with tradespace data because it allows the user to choose the theme
which best distinguishes the complex data.

THEIA also allows users to easily save plots for future reference, export findings for further
analysis, and utilize multiple data files simultaneously.

Ultimately, THEIA serves as an excellent example of how open-source libraries can be
leveraged to develop robust solutions to emerging problems.
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Figure 2.  View of THEIA’s file browser.

July 10, 2024 347

https://archive.ics.uci.edu/dataset/53/iris
https://doi.org/10.5281/zenodo.3706648
https://doi.org/10.5281/zenodo.11046027
https://doi.org/10.5281/zenodo.10653612
https://plot.ly/


THEIA: An Offline Tool for Tradespace Visualization  | Williams et al., 2024

Figure 3.  View of THEIA’s plot type options.

Figure 4.  View of THEIA’s colormap options.

Figure 5.  A view of the ‘Download Configuration’ and ‘Export Plot’ options. “Download Configuration”
can be used to save a YAML file that THEIA can leverage to return to a given state. “Export Plot” is used
to save an HTML version of a specific plot.
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Abstract

With the influx of large data from multiple instruments and experiments, scientists are
wrangling complex data pipelines that are context-dependent and non-reproducible. We
demonstrate how we leverage Prefect [1], a modern orchestration framework, to facilitate
fisheries acoustics data processing. We built a Python package Echodataflow [2] which 1)
allows users to specify workflows and their parameters through editing text “recipes” which
provide transparency and reproducibility of the pipelines; 2) supports scaling of the work-
flows while abstracting the computational infrastructure; 3) provides monitoring and logging
of the workflow progress. Under the hood, Echodataflow uses Prefect to execute the work-
flows while providing a domain-friendly interface to facilitate diverse fisheries acoustics use
cases. We demonstrate the features through a typical ship survey data processing pipeline.

Keywords prefect, workflow orchestration, dask, zarr, fisheries acoustics

1. Motivation
Acoustic fisheries surveys and ocean observing systems collect terabytes of echosounder
(water column sonar) data that require custom processing pipelines to obtain the distrib%
utions and abundance of fish and zooplankton in the ocean [3]. The data are collected by
sending an acoustic signal into the ocean which scatters from objects in the water column
and the returning “echo” is recorded. Although data usually have similar dimensions:
range, time, location, and frequency, and can be stored into multi%dimensional arrays, the
exact format varies based on the data collection scheme and the exact instrument used.
Fisheries ship surveys, for example, follow pre%defined paths (transects) and can span
several months (Figure  1 left). Ocean moorings, on the other hand, have instruments
at fixed locations and can collect data continuously at specified intervals for months
(Figure  1 right). Uncrewed Surface Vessels (USVs) (e.g. Saildrone [4], DriX [5], Figure  1
middle) can autonomously collect echosounder data over large spatial regions. In all these
scenarios, data are usually collected with similar instruments, and there is an overlap
between the initial processing procedures. However, there are always variations associated
with the specific data collection format, end research needs, data volume, and available
computational infrastructure. For example, ship surveys may require grouping data along
individual transects and exluding other data; they may also have varying range/depth
resulting into data arrays of different dimensions. Mooring data are more regular, but their
volume is large, and studies may require organizing data into daily patterns to analyze
long term trends. USVs collect data at varying speeds thus requiring converting the time
dimension to distance in order to have consistent echo patterns. The time when the data
needs to be processed also affects the workflows: on premise/realtime applications usually
require processing small data subsets at a time with limited computing resources; historical
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Figure 1.  Data Collection Schemes: left, ship survey transect map for the Joint U.S.-Canada Integrated
Ecosystem and Pacific Hake Acoustic Trawl Survey [6] middle, USV path map for Saildrone west coast
survey [7] right, map and instrument diagram for a stationary ocean observing system (Ocean Observa-
tories Initiative Cabled and Endurance Arrays [8], Image Credit: Center for Environmental Visualization,
University of Washington)

analyses require processing large datasets, and can benefit from cluster/cloud computing.
The various scenarios demand different data workflows, and adapting from one setting to
another is not trivial.

2. Fisheries Acoustics Workflows
Fisheries acoustics scientists traditionally have had go%to tools and procedures for their data
processing and analysis, mostly relying on computation on a local computer. However, as
the diversity of computing and data storage resources grows and the field becomes more
interdisciplinary (it involves scientists with backgrounds in physics, biology, oceanography,
acoustics, signal processing, machine learning, software engineering, etc.), it is becoming
more challenging to make decisions on the best arrangement to accomplish the work. For
example, Figure 2 shows the many variations of workflows that can be defined based on
the use cases and the options for data storage and computing infrastructure.

Figure 2.  Fisheries Acoustics Workflow Variations: Various use cases (fisheries, data management,
machine learning, education) drive different needs for data storage and computing infrastructure. Options
are abundant but adopting new technology and adapting workflows across use cases is not trivial.
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2.1. User Stories

To demonstrate the software requirements of the fisheries acoustics community, below we
describe several example user stories.

A fisheries scientist needs to process all data after a 2%month ship survey to obtain fish
biomass estimates. They have previously used a commercial software package and are
open to exploring open%source tools to achieve the same goal. They are familiar with basic
scripting in Python.

A machine learning engineer is developing an ML algorithm to automatically detect fish
on a USV. They need to prepare a large dataset for training but do not know all the necessary
preprocessing steps. They are very familiar with ML libraries but do not have the domain%
specific knowledge for acoustic data processing. They are also not familiar with distributed
computing libraries.

A data manager wants to process several terabytes of mooring data and serve them to the
scientific community. They have a few Python scripts to do this for a small set of files at a
time, but want to scale the processing for many deployments using a cloud infrastructure.

An acoustics graduate student obtained echosounder data analysis scripts from a retired
scientist but does not have all the parameters needed to reproduce the results in order to
proceed with their dissertation research.

We draw attention to the different levels of experience of these users: each user has exper%
tise in a subdomain, however, to accomplish their specific goal(s), they need to learn new
tools or obtain knowledge from others. We outline several requirements that stem from
these stories:

• The system should run both on a local computer and within a cloud environment.
• The system should allow processing to be scaled to large datasets, but should not be

overly complicated. For example, users with Python scripting experience can run it
locally with pre%defined stages and parameters.

• The system should provide visibility into the operations that are applied to the data,
and the procedures should be interpretable to users without acoustics expertise.

• The system should preferably be free and open source so that it is accessible to
members of different institutions.

• The system should adapt to rapid changes of cloud and distributed computing
libraries, and preferably should leverage existing developments within the technical
communities.

2.2. Software Landscape

Traditionally echosounder data processing pipelines are executed within a GUI%based
software (e.g. Echoview [9], LSSS [10], ESP3 [11], Matecho [12]). These software packages
have been invaluable for onboard real%time visualization, as well as post%survey data
screening and annotation. Some of them also support integration with scripting tools which
facilitates the reproducible execution of the pipelines. For example, the Echoview software
provides the option to automate pipelines through an Automation Module and to visualize
the processing stages in a Dataflow Toolbox. Further, one can script operations through
the echoviewR package [13]. However, since Echoview is neither free nor open source, these
pipelines cannot be shared with researchers who do not have a license. In general, the GUI
tools are usually designed to be used on a desktop computer and require downloading the
data first, which is becoming challenging with the growing volume of the datasets. There
has been also growth in development of new methods to detect the species of interest
from the echosounder data, with the goal of substituting for the manual annotation proce%
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dures and making analysis of large datasets more efficient and objective. However, the
new methods are typically developed independently from the existing software packages.
Over the last several years there has been substantial development of open source Python
packages (PyEchoLab [14], echopype [15], echopy [16]), each providing common echosounder
processing functionalities, but differing in the data structure organization and processing.
Since echosounder instruments store the data in binary, instrument%specific formats, the
first stage requires parsing the raw data into a more common format. PyEcholab converts
the data into numpy [17] arrays. echopy expects data are already parsed into numpy arrays
and all methods operate on them. Echopype converts raw data files into a standardized
Python EchoData object, which can be stored in a zarr [18] format and supports distributed
computing by utilizing dask [19] and xarray [20]. The use of open source packages and
well%established formats allow further integration with other open source libraries such as
those for machine learning (e.g. classification, clustering) or visualization. In addition, if
custom modification is required for a specific application scenario, researchers can adapt
the code and contribute the modification back to the packages, which is likely to benefit
other researchers.

2.2.1. Challenges:

Despite the availability of methods and tools to process echosounder data, it is not trivial to
orchestrate all function calls in an end%to%end pipeline. While a well%documented Jupyter
[21] notebook can show the sequence of processing stages, a considerable amount of path
and parameter configuration is required to execute these stages on a large dataset, store
the intermediate data products, and log the process comprehensively. Although automation
can be achieved through a combination of Python and bash scripts that provision the
environment, execute the stages, and manage inputs/outputs, the configuration process can
be tedious, prone to error, and specific to the use case and the computing platform. Adapting
an existing procedure to a new setting is usually not straightforward, and sometimes
even reproducing previous results can pose a challenge. Below we discuss in more detail
the different choices of data storage and computational infrastructure and the associated
challenges of building workflows across them.

Data Storage:

Researchers are faced with decisions of where to store the data from experiments, interme%
diate products, and final results. Initially, data are usually stored on local hard drive storage
associated with the instrument (which on some platforms may have limited capacity), but
eventually, these data may be transferred to a data archive if one is maintained within
the community. Some agencies (e.g. NOAA National Centers for Environmental Information
(NCEI) [22]) have adopted cloud storage, and have publicly shared their data, which
greatly facilitates data access and reuse. However, those repositories are usually not where
researchers can store processed products. Funding models and organizational structure
can result in short%term availability of resources and the need to change providers. Certain
applications may need to access the data before they are archived and unreliable internet
connection may require storing the data on%premise or at temporary locations. To be agile
to those frequent changes and allow to easily switch between different platforms, workflows
will benefit from a level of abstraction from storage systems.

Computing Infrastructure:

With the growth of the echosounder datasets, researchers face challenges processing the
data on their personal machines: both in terms of memory usage and computational
time. A typical first attempt for resolution would be to amend the workflow to process
smaller chunks of the data and parallelize operations across multiple cores if available.
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However, today researchers are also presented with a multitude of options for distributed
computing: high%performance computing clusters at local or national institutions, cloud
provider services: batch computing (e.g. Azure Batch, AWS Batch, Google Cloud Batch),
container services (e.g. Amazon Elastic Container Services, Azure Container Apps, Google
Kubernetes Engine), serverless functions (e.g. AWS Lamdba Functions, Google Cloud Func%
tions, Microsoft Azure Functions). The choice may be driven by the storage system: its usage
fees and retrieval speeds. Data, code and workflow organization usually has to be adapted
based on the computing infrastructure. The knowledge required to configure these systems
to achieve efficient processing is quite in%depth, and distributed libraries can be hard
to debug and can have unexpected performance bottlenecks. Abstracting the computing
infrastructure and the execution of the tasks can allow researchers to focus on the scientific
analysis of these large and rich datasets.

3. Echodataflow Overview
At the center of echodataflow’s design [2] is the notion that a workflow can be configured
through a set of recipes (.yaml files) that specify the pipeline, data storage, and logging
structure. The idea draws inspiration from the Pangeo%Forge Project which facilitates the
Extraction, Transformation, Loading (ETL) of earth science geospatial datasets from tradi%
tional repositories to analysis%ready, cloud%optimized (ARCO) data stores [23]. The pangeo%
forge recipes (which themselves are inspired by the conda%forge recipes [24]) provide a
model of how the data should be accessed and transformed, and the project has garnered
numerous recipes from the community.

While Pangeo%Forge’s focus is on transformation from netcdf [25] and hdf5 [26] formats
to zarr, echodataflow’s aim is to support full echosounder data processing and analysis
pipelines: from instrument%generated raw data files to data products which contain
acoustically%derived biological estimates, such as abundance and biomass. echodataflow
leverages Prefect [1] to abstract data and computation management. In Figure  3 we
provide an overview of echodataflow’s framework. At the center we see several steps of an
echosounder data processing pipeline: open_raw, combine_echodata, compute_Sv, compute_MVBS,
frequency_differencing, which produce echo classificaton results using a simple threshold%
based criterion. All these functions exist in the echopype package, and are wrapped by
echodataflow into pre%defined stages. Prefect executes the stages on a Dask cluster which
can be started locally or can be externally set up. These echopype functions already support
distributed operations with Dask, and thus the integration with Prefect within echodataflow
is natural. Dask clusters can be set up on a variety of platforms: local computers, cloud
virtual machines, kubernetes [27] clusters, or HPC clusters (via dask-jobqueue [28]), etc.
and allow abstraction from the computing infrastructure. The input datasets, intermediate
data products, and final data products can live in different storage systems (local/cloud)
and Prefect’s block feature provides seamless, provider%agnostic, and secure integration
with them. Workflows can be executed and monitored through Prefect’s dashboard, while
logging of each function is handled by echodataflow.

3.1. Why Prefect?

We chose Prefect among other Python workflow orchestration frameworks such as Apache
Airflow [29], Dagster [30], Argo [31], Luigi [32]. While most of these tools provide flexibily
and level of abstraction suitable for executing fisheries acoustics pipelines, we selected
Prefect for the following reasons:

• Prefect accepts dynamic workflows which are specified at runtime and do not require
to follow a Directed Acyclic Graph, which can be restricting and difficult to implement.
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Figure 3.  Echodataflow Framework: The above diagram provides an overview of the echodataflow
framework: the objective is to fetch raw files from a local filesystem/cloud archive, process them through
several stages of an echosounder data workflow using a cluster infrastructure, and store both interme-
diate and final data products. In echodataflow the workflow is executed based on text configurations, and
logs are generated for the individual processing stages. Prefect handles the execution of the tasks on the
cluster and provides tools for monitoring the workflow runs.

• In Prefect, Python functions are first class citizens, thus building a Prefect workflow
does not deviate substantially from traditional science workflows composed of func%
tions.

• Prefect integrates with a dask cluster, and echopype processing functions are already
using dask to scale operations.

• Prefect’s code runs similarly locally as well as on cloud services.
• Prefect’s monitoring dashboard is open source, can be run locally, and is intuitive to

use.

We next describe in more detail the components of the workflow lifecycle.

4. Workflow Configuration
The main goal of echodataflow is to allow users to configure an echosounder data process%
ing pipeline through editing configuration “recipe” templates. echodataflow can be config%
ured through three templates: datastore.yaml which handles the data storage locations,
pipeline.yml which specifies the processing stages, and logging.yaml which sets the logging
format.

4.1. Data Storage Configuration

Below we show an example file datastore.yaml with a data storage configuration for a ship
survey. In this scenario the goal is to process data from the Joint U.S.%Canada Integrated
Ecosystem and Pacific Hake Acoustic Trawl Survey [6] which are publicly available on an
AWS S3 bucket hosted by NOAA National Centers for Environmental Information Acoustics
(NCEA) Archive [22]. The archive contains data from many surveys dating back to 1991 (∼
280TB). The configuration allows to pass parameters specifying the ship, survey, and sonar
model names and select the subset of files belonging only to the survey of interest. The
output destination is set to a private S3 bucket belonging to the user (within an AWS account
different from the input one), and the credentials are passed through a block_name. The
survey contains ∼4000 files, and one can set the group option to combine the files into sur%
vey%specific groups: based on the transect information provided in the transect_group.txt
file. One can further use regular expressions to subselect other subgroups based on needs.
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# datastore.yaml

name: Bell_M._Shimada-SH1707-EK60
sonar_model: EK60
raw_regex: (.*)-?D(?P<date>\w{1,8})-T(?P<time>\w{1,6})
args:
  urlpath: s3://ncei-wcsd-archive/data/raw/{{ ship_name }}/{{ survey_name }}/{{ sonar_model }}/*.raw
  parameters:
    ship_name: Bell_M._Shimada
    survey_name: SH1707
    sonar_model: EK60
  storage_options:
    anon: true
  group:
    file: ./transect_group.txt
    storage_options:
      block_name: echodataflow-aws-credentials
      type: AWS
  group_name: default_group
  json_export: true
  raw_json_path: s3://echodataflow-workground/combined_files/raw_json
output:
  urlpath: <YOUR-S3-BUCKET>
  overwrite: true
  retention: false
  storage_options:
    block_name: echodataflow-aws-credentials
    type: AWS

4.2. Pipeline Configuration

The pipeline configuration file’s purpose is to list the stages of the processing pipeline and
the computational set%up for their execution. Below we show an example pipeline.yaml
file which cofigures a pipeline with several stages: open_raw, combine_echodata, compute_Sv,
compute_MVBS. Each stage is executed as a separate Prefect subflow (a component of a
Prefect workflow), and one can specify additional options on whether to store the raw files.
echodataflow requires access to a Dask cluster: it can be either created on the fly by setting
the use_local_dask to true, or an IP address of an already running cluster can be provided.
Individual stages may require different cluster configurations to efficiently execute the
tasks. Those can be specified with the additional prefect_config option through which the
user can set a specific Dask task runner or the number of retries. Managing retries is
essential for handling transient failures, such as connectivity issues, ensuring the stages
can be re%executed without any manual interference if a failure occurs.
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# pipeline.yaml

active_recipe: standard
use_local_dask: true
n_workers: 4
scheduler_address: tcp://127.0.0.1:61918
pipeline:
  - recipe_name: standard
    stages:
      - name: echodataflow_open_raw
        module: echodataflow.stages.subflows.open_raw
        options:
          save_raw_file: true
          use_raw_offline: true
          use_offline: true
        prefect_config:
          retries: 3
      - name: echodataflow_combine_echodata
        module: echodataflow.stages.subflows.combine_echodata
        options:
          use_offline: true
      - name: echodataflow_compute_Sv
        module: echodataflow.stages.subflows.compute_Sv
        options:
          use_offline: true
      - name: echodataflow_compute_MVBS
        module: echodataflow.stages.subflows.compute_MVBS
        options:
          use_offline: true
        external_params:
          range_meter_bin: 20
          ping_time_bin: 20S

4.3. Logging Configuration

By default, the outcomes of each stage are logged. The logs can be stored in .json or plain
text files, and the format of the entries can be specified in the configuration file as displayed
below. The json format allows searching through the logs for a specific key.

# logging.yaml

version: 1
disable_existing_loggers: False
formatters:
  json:
    format: '[%(asctime)s] %(process)d %(levelname)s %(mod_name)s:%(func_name)s:%(lineno)s -
%(message)s'
  plaintext:
    format: '[%(asctime)s] %(process)d %(levelname)s %(mod_name)s:%(func_name)s:%(lineno)s -
%(message)s'
handlers:
  logfile:
    class: logging.handlers.RotatingFileHandler
    formatter: plaintext
    level: DEBUG
    filename: echodataflow.log
    maxBytes: 1000000
    backupCount: 3

loggers:
  echodataflow:
    level: DEBUG
    propagate: False
    handlers: [logfile]

In this case the logs are stored in the plain text file echodataflow.log. Below we show an
example of output logs.
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[2024-06-06 17:32:08,945] 51493 ERROR apply_mask.py:EK60_SH1707_Shimada2_applymask.zarr:147 - Computing
apply_mask
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - Encountered Some Error in
EK60_SH1707_Shimada0
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - 'source_ds' must have coordinates
'ping_time' and 'range_sample'!
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - Encountered Some Error in
EK60_SH1707_Shimada1
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - 'source_ds' must have coordinates
'ping_time' and 'range_sample'!
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - Encountered Some Error in
EK60_SH1707_Shimada2
[2024-06-06 17:32:08,946] 51493 ERROR file_utils.py:file_utils:147 - 'source_ds' must have coordinates
'ping_time' and 'range_sample'!

In Section 7, we provide more information on logging options.

5. Workflow Execution
To convert a scientific pipeline into an executable Prefect workflow, one needs to organize
its components into flows, sublfows, and tasks (the key objects of Prefect’s execution logic).
Usually, the stages of a pipeline are organized into flows and subflows, while the individual
pieces of work within the stage are organized into tasks. In practice, flows, subflows, and
tasks are all Python functions, and they differ in how we want to execute them (e.g. concur%
rently/sequentially, w/o retries), and what we want to track during execution (e.g. input/
outputs, state logging, etc.). In echodataflow we organize the typical echosounder processing
stages into subflows (flows within the main workflow), while the operations on different
files (or groups of them) are individual tasks. We describe how functions are organized in
the open_raw stage, which reads the files from raw format, parses the data, and writes them
into a zarr format. The echodataflow_open_raw function is decorated as a flow, and is one of
many subflows of the full workflow. This function processes all files.

@flow
@echodataflow(processing_stage="Open-Raw", type="FLOW")
def echodataflow_open_raw(
    groups: Dict[str, Group], config: Dataset, stage: Stage, prev_stage: Optional[Stage]
):
    """
    Process raw sonar data files and convert them to zarr format.

    Args:
        config (Dataset): Configuration for the dataset being processed.
        stage (Stage): Configuration for the current processing stage.
        prev_stage (Stage): Configuration for the previous processing stage.

    Returns:
        List[Output]: List of processed outputs organized based on transects.

echodataflow_open_raw contains a loop which iterates through all file groups and applies the
process_raw function which operates on a single group and is decorated as a task. All tasks
will be executed on the Dask cluster.
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for name, gr in groups.items():
        for raw in gr.data:
            new_processed_raw = process_raw.with_options(
                task_run_name=raw.file_path, name=raw.file_path, retries=3
            )
            future = new_processed_raw.submit(raw, gr, working_dir, config, stage)
            futures[name].append(future)

@task()
@echodataflow()
def process_raw(
    raw: EchodataflowObject, group: Group, working_dir: str, config: Dataset, stage: Stage
):
    """
    Process a single group of raw sonar data files.

6. Workflow Monitoring
One of the main advantages of using orchestration frameworks is that they usually provide
tools to monitor the workflow execution. The integration with Prefect allows leveraging
Prefect’s dashboard (Prefect UI) for monitoring the execution of the flows. The dashboard
can be run locally and within Prefect’s online managed system (Prefect Cloud). The local
version provides an entirely open source framework for running and monitoring work%
flows. Figure 4 shows the view of completed runs within the dashboard. The progress can
be monitored while the flows are in progress.

Further, one can also view the progress of the execution of the tasks on the Dask cluster.

7. Workflow Logging
Processing large data archives requires a robust logging system to identify at which step
and for which files the processing has failed. Locating the issues allows to set a path for%
ward to resolve them: either through improving the robustness of the individual libraries
performing the processing steps, or through identifying the artifacts of the data which are
incompatible with the existing pipeline. To address this, we provide several approaches:

Figure 4.  Flow Runs: Log of completed runs in Prefect UI. The stages (subflows) are executed sequen-
tially. One can expand the view of an individual flow and see the tasks computed (asynchronously) within
it.
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Figure 5.  Dask Dashboard: The execution of the tasks on the Dask cluster can also be monitored
through the Dask dashboard.

• Basic Logging with Dask Worker Streams: this approach configures Dask worker
streams to handle echodataflow logs, which is straightforward if exact log order is not
crucial.

• Centralized Logging with Amazon CloudWatch [33]: this approach centralizes all logs
for easy access and analysis. It can be useful when users are already utilizing AWS.

• Advanced Logging with Apache Kafka [34] and Elastic Stack [35] (Elasticsearch,
Kibana, Beats, Logstash): this approach leverages Kafka for log aggregation and Elastic
Stack for log analysis and visualization, offering a robust solution for those who can
maintain the infrastructure, for example data center managers.

By default if logging is not configured, all the worker messages are directed to the appli%
cation console. The order of logs may not be preserved since logs are written once control
returns from the Dask workers to the main application.

8. Workflow Deployment

8.1. Notebook

echodataflow can be directly initiated within a Jupyter notebook, which makes development
interactive and provides a work environment familiar to researchers. One can see how the
workflow is initiated within the Jupyter cell in Figure 6.

We provide two demo notebooks: one for execution on a local machine and another one for
execution on AWS.

8.2. Docker

We facilitate the deployment of echodataflow on various platforms by building a Docker
image from which one can launch a container with all required components and the user
can access the workflow dashboard on the corresponding port.
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Figure 6.  Initiating echodataflow in a Jupyter Notebook: Once one has a set of “recipe” configuration
files, they can initiate the workflow in a notebook cell with the echodataflow_start command.

docker pull blackdranzer/echodataflow

prefect server start

docker run --network="host" -e PREFECT_API_URL=http://host.docker.internal:4200/api blackdranzer/
echodataflow

Upon execution, the user can readily access the Prefect UI dashboard and run workflows
from there.

We also provide a Docker image for initiating logging with Kafka and Elastic Stack, thus
streamlining the configuration of several tools.

9. Command Line Interface
We provide a command line interface which supports credential handling, and several
additional features for managing workflows: stage addition and rule validation.

9.1. Adding Stages

Currently, most major functionalities in the echopype package are wrapped into stages:
open_raw, add_depth, add_location, compute_Sv, compute_TS, compute_MVBS, combine_echodata,
frequency_differencing, apply_mask.

We provide tools to generate boilerplate template configuration based on the existing
stages. Here is an example to add a stage:

echodataflow gs <stage_name>

For instance, to generate a boilerplate configuration for the compute_Sv stage, one would use:
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echodataflow gs compute_Sv

This command creates a template configuration file for the specified stage, allowing to
customize and integrate it into a workflow. The generated file includes:

• a flow: it orchestrates the execution of all files that need to be processed, either
concurrently or in parallel, based on the configuration.

• a task (helper function): it assists the flow by processing individual files.

9.2. Rule Validation

Scientific workflows often have stages that cannot be executed until other stages have
completed. Those conditions can be set through echodataflow client during the initialization
process and are stored in a echodataflow_rules.txt file:

echodataflow_open_raw:echodataflow_compute_Sv
echodataflow_open_raw:echodataflow_combine_echodata
echodataflow_open_raw:echodataflow_compute_TS
echodataflow_combine_echodata:echodataflow_compute_Sv
echodataflow_compute_Sv:echodataflow_compute_MVBS

These rules dictate the sequence in which stages should be executed, ensuring that each
stage waits for its dependencies to complete. They can be set through the echodataflow rules
-add ... command.

9.2.1. Aspect-Oriented Programming (AOP) for Rule Validation:

In echodataflow, we adopt an aspect%oriented programming [36] approach for rule valida%
tion. This is achieved using a decorator that can be applied to functions to enforce rules
and log function execution details. The echodataflow decorator logs the entry and exit of a
decorated function and modifies the function’s arguments based on the execution context.
This supports two types of execution: “TASK” and “FLOW”.

Example Usage:

@echodataflow(processing_stage="StageA", type="FLOW")
def my_function(arg1, arg2):
    # Function code here
    pass

In the example, the echodataflow decorator ensures that the function my_function is exe%
cuted within the context of “StageA” as a “FLOW”, checking for dependencies and logging
relevant information.

10. Example Use Case: Processing Ship Survey Data from an
Archive
We demonstrate a workflow processing all acoustic data for the 2017 Joint U.S.%Canada Inte%
grated Ecosystem and Pacific Hake Acoustic Trawl Survey through a few routine processing
stages. The survey spans a period of 06/15/2017 % 09/13/2017, covering the entire west coast
of the US and Canada. Figure 1(a) shows a map of a typical transect schedule of the survey.
Raw acoustic data are collected continuously while the ship is in motion, resulting in a
total of 3873 files collected with a total size of 93 GB. The raw files are archived by the
NOAA NCEI Water Column Sonar Data Archive and are publicly accessible on their Amazon
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Web Services S3 bucket (https://registry.opendata.aws/ncei%wcsd%archive/). The processing
pipeline involves several steps:

• Convert raw files to cloud%native zarr format following closely a community conven%
tion [15], [37]

• Combine multiple individual zarr files within a continuous transect segment into a
single zarr file

• Compute Sv: calibrate the measured acoustic backscatter data to volume backscatter%
ing strength (Sv, unit: dB re 1 m⁻¹)

Once data are converted to Sv, they are easy to manipulate, as the data are stored in an
xarray data array and are smaller than that of the original data. The final dataset can be
served as an analysis%ready data product to the community. It can be beneficial to store also
intermediate datasets at different processing stages: for example, preserving the converted
raw files in the standardized zarr format allows users to regenerate any of the following
stages with different groupings or resolution, without having to fetch and convert raw data
again.

The execution of the workflow with echodataflow allowed us to monitor the progress of all
files Figure 7: 3872 files were successfully processed, and 1 failed. Most importantly, the
failure did not block the execution of the other files, and a log was generated for the stage
and the filename for which the error occurred. This experiment serves as a confirmation
that the transition from local development to a full production pipeline with echodataflow
can indeed be smooth.

Figure 7.  Processing full 2017 Survey Data: 1/3873 files failed at the open_raw stage, but this did not
impact the entire pipeline. As shown, other files were processed successfully through all stages.
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11. Future Development
Our immediate goal is to provide more example workflow recipes integrating other stages
of echosounder data processing, such as machine learning prediction, training dataset
generation, biomass estimation, interactive visualization, etc. We will demonstrate utilizing
functionalities from a suite of open source Python packages (echoregions [38] for reading
region annotations and creating corresponding masks, echopop [39] for combining acoustic
data with biological “ground truth” into biomass estimation, echoshader [40] for echogram
and map dashboard visualization) in building workflows for the Pacific Hake Survey: both
in a historical and near%realtime on%ship data processing context. We aim to streamline the
stage addition process. We will further investigate how to improve memory management
and caching between and within stages to optimize for different scenarios. There is growing
interest in the fisheries acoustics community to share global, accessible, and interoperable
datasets [41], and to agree on community data standards and definitions of processing levels
[37], [42]. As those mature we will align them with existing stages in echodataflow, which
will support building interoperable datasets whose integration will push us to study bigger
and more challenging questions in fisheries acoustics.

12. Beyond Fisheries Acoustics
Echodataflow was designed to facilitate fisheries acoustics workflows, but the structure can
be adapted to data processing pipelines in other scientific communities. The key aspects are
to identify the potential stages of the workflows and associated Python packages/functions
that implement them, and to design the structure of the configuration files. The other as%
pects such as logging, deployment, monitoring, new%stage integration are domain%agnostic.
Processing pipelines that require manipulation of large labeled arrays can directly benefit
from the Dask cluster integration and are prevalent in the research community. Our use
case of regrouping data based on time segments is a common need within scientific settings
in which the file unit level of the instrument is not aligned with the unit level of analysis,
and requires further reorganization and potential resampling and regridding along certain
coordinates. We hope it can serve as a guide on how to build configurable, reproducible,
and scalable workflows in new scientific areas.
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Abstract

In recent years, leveraging satellite imagery with deep learning (DL) architectures has
become an effective approach for environmental monitoring tasks, including forest wildfire
detection. Nevertheless, this integration requires substantial high-quality labeled data to
train the DL models accurately. Leveraging the capabilities of multiple Python libraries, such
as rasterio and GeoPandas, and Google Earth Engine’s Python API, this study introduces
a streamlined methodology to efficiently gather, label, augment, process, and evaluate a
large-scale bi-temporal high-resolution satellite imagery dataset for DL-driven forest wildfire
detection. Known as the California Wildfire GeoImaging Dataset (CWGID), this dataset com-
prises over 100,000 labeled ‘before’ and ‘after’ wildfire image pairs, created from pre-existing
satellite imagery. An analysis of the dataset using pre-trained and adapted Convolutional
Neural Network (CNN) architectures, such as VGG16 and EfficientNet, achieved accuracies of
respectively 76% and 93%. The pipeline outlined in this paper demonstrates how Python can
be used to gather and process high-resolution satellite imagery datasets, leading to accurate
wildfire detection and providing a tool for broader environmental monitoring.

Keywords Wildfire Detection, Satellite Imagery, Deep Learning, Convolutional Neural
Networks (CNN), California Wildfire GeoImaging Dataset (CWGID), Google Earth Engine
(GEE), Sentinel-2, Machine Learning, Environmental Monitoring, Geospatial Data Analysis

1. Introduction
This paper presents a Python-based methodology for gathering and using a labeled high-
resolution satellite imagery dataset for forest wildfire detection.

Forests are important ecosystems found globally. They are made up of trees, plants, and
other various types of vegetation. Forests host many species and are crucial for maintaining
environmental health, as they support biodiversity, climate regulation, and oxygen produc-
tion. Moreover, they bring economic and social benefits, including energy production, job
opportunities, and spaces for leisure and tourism. Protecting forests and tackling forest loss
is a current global priority [1].

With the development of Earth Observation (EO) systems, remote sensing became a
time-efficient and cost-effective method for monitoring and detecting forest change [2].
Moreover, recent advancements in satellite technology have significantly enhanced forest
monitoring capabilities by providing high-resolution imagery and increasing the frequency
of observations.

Satellite imagery-based change detection and forest monitoring have traditionally relied on
manually identifying specific features and using predefined algorithms and models, such as
differential analysis, thresholding techniques, and clustering and classification algorithms.
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This approach requires considerable domain expertise and such algorithms and models
may not capture the full complexity of the studied data [3].

With the emergence of deep learning (DL) algorithms, specifically computer vision meth-
ods, such as Convolutional Neural Networks (CNNs) [4] and Fully Convolutional Neural
Networks (e.g., U-Nets [5]), there is a significant opportunity to enhance and facilitate forest
change detection efforts. These advanced computational methods can rapidly identify
complex patterns within vast datasets. Furthermore, when integrated with EO systems
they can facilitate near real-time monitoring and detection of multiple forest loss causes,
assess their extent, or even predict and evaluate their spread [6], [7]. Thus, integrating DL
methods with satellite imagery offers a more dynamic and precise approach, capable of
handling the patterns and variability associated with imagery data. For instance, DL models
can automatically learn complex patterns related to wildfire spread from labeled examples,
whereas traditional methods might miss subtle but important indicators.

However, DL algorithms require a substantial amount of labeled data to effectively learn
and identify change [8]. Therefore, the development of labeled high-resolution satellite
imagery datasets is important and relevant for addressing environmental problems. Cur-
rently, the availability of labeled high-quality satellite imagery datasets is an obstacle to
developing DL models for environmental change detection [9].

Generally, building a satellite imagery dataset is a time-intensive process. However, Google
Earth Engine (GEE) [10] has recently revolutionized this process by providing an exten-
sive, cloud-based platform for the efficient collection, processing, and analysis of satellite
imagery. GEE’s Python API allows its users to programmatically query their platform and
download cloud-free large-scale satellite imagery datasets from multiple satellite collec-
tions, such as Sentinel-2.

For example, while traditional methods might require manual search and download of
images, GEE can automate this process, significantly reducing the time needed to find
suitable satellite images. This technology makes data collection and processing faster and
easier, facilitating environmental monitoring by providing reliable and easily accessible
high-quality satellite imagery.

Furthermore, Python facilitates the use of DL in environmental monitoring by providing
a rich ecosystem of libraries and tools, such as TensorFlow [11], which contains multiple
existing DL architectures that can be adapted and used with satellite imagery. Nevertheless,
integrating DL and remotely sensed images requires multiple processing steps, such as
having smaller imagery tiles and adapting the models to use GeoTIFF data, among others.
These steps include:

1. Data Acquisition: Collect satellite imagery from sources such as Google Earth Engine
or other satellite image providers.

2. Image Tiling: Divide large satellite images into smaller tiles to fit the input image size
used in DL models.

3. Data Annotation: Label the images to create a ground truth dataset for training DL
models.

4. Data Augmentation: Applying transformations such as rotations and flips to increase
the diversity of the training dataset.

Python’s tools help manage these steps. For example, libraries like rasterio, Tifffile and
GeoPandas, can be used to process and transform satellite imagery data into formats
suitable for DL models.

This paper presents a methodology, implemented in Python, to streamline the creation and
evaluation, via DL, of satellite imagery datasets. The methodology covers the entire work-
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flow: from data acquisition, labelling, and preprocessing to model adaptation, training, and
evaluation. Specifically, this approach is applied to gather and validate a high-resolution
dataset for forest wildfire detection, the California Wildfire GeoImaging Dataset (CWGID).
Additionally, this methodology can be adapted for various environmental monitoring tasks,
showing its versatility in studying and responding to different environmental changes.

2. Building a Sentinel-2 Satellite Imagery Dataset
To construct the CWGID, a multi-step process is needed.

2.1. Gathering and Refining Historic Wildfire Polygon Data from California

The initial step is to gather georeferenced forest wildfire polygon data from California,
sourced from the Fire and Resource Assessment Program (FRAP) maintained by the Cali-
fornia Department of Forestry and Fire Protection [12]. This FRAP data includes perimeters
of past wildfires and serves as the geographic reference needed to select satellite imagery
with GEE. Figure 1 illustrates the polygons from the FRAP. The polygons delineated in purple
represent areas affected by wildfires in forested regions. These delineated polygons are
used to create the CWGID.

Then, in Python, the Pandas library [13] is used to organize the forest wildfire attribute
data into a Pandas DataFrame, which is then filtered to align with the launch date and
operational phase of the Sentinel-2 satellites, selected for their open-source, high-resolution
imagery capabilities [14]. Additionally, the dates are adjusted to fall within the green-up
period, avoiding the winter and fall seasons where snow cover could interfere with identi-
fying burnt areas.

Next, the data is formatted to meet GEE’s querying specifications:

• A 15-day range for pre- and post-wildfire dates is generated and added to the
DataFrame.

• Using Pandas, the date ranges are formatted to meet GEE’s requirements.

Figure 1.  Representation of the Polygon Data from the FRAP. Polygons delineated in purple represent
wildfires that occurred in forested areas, used for the California Wildfire GeoImaging Dataset (CWGID).
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• Using the pyproj library [15], the recorded point coordinates are converted from
NAD83 to WGS84 to facilitate the querying process.

• With the geopy [16] library, the coordinates of the squared region of interest are
calculated, featuring a side length of 15 miles.

2.2. Downloading the Imagery Data Using GEE’s Python API

GEE is a cloud-based platform for global environmental data analysis. It combines an
extensive archive of satellite imagery and geospatial datasets with powerful computational
resources to enable researchers to detect and quantify changes on the Earth’s surface. GEE’s
Python API offers an accessible interface for automating the process of satellite imagery
downloads, making it a popular tool for environmental monitoring and research projects.

Multiple steps are needed to set up the GEE’s Python API. First, a project is created in Google
Cloud Console and the Earth Engine API is enabled. Authentication and Google Drive editing
rights are configured to effectively manage and store the downloaded imagery. Following
the setup, the Earth Engine Python API is installed on a local machine, and the necessary
authentications are performed to initialize the API.

Then, a Python script is developed to automate the download of images depicting the pre- or
post-wildfire data using GEE’s Python API (see Program 1). To download three-channel RGB
GeoTIFF imagery, the bands B4 (red), B3(green), and B2(blue) need to be specified (different
band compositions can be selected in this step). In satellite imagery, bands refer to specific
wavelength ranges captured by the satellite sensors, and they are used to create composite
images that highlight different features of the Earth’s surface. These bands correspond to
the visible spectrum, which is useful for visual interpretation and analysis. The script to
download the satellite imagery needed using GEE (see Program 1) is configured with a for
loop to iterate through each entry in the DataFrame, extracting necessary parameters such
as date ranges, region of interest (ROI) coordinates, and center coordinates of each wildfire
polygon. Also, the script is designed to specify parameters such as the desired image collec-
tion and a threshold for cloud coverage. Tiles exhibiting more than 10% cloud coverage are
automatically excluded to maintain data quality. Finally, the images are downloaded and
exported to Google Drive in a GeoTIFF format.

Figure 2 presents an example of a pre-and post-wildfire imagery pair downloaded from
GEE to Google Drive using Program 1 .

2.3. Creating the Ground Truth Wildfire Labels

Ground truth masks are essential in forest wildfire detection and general land cover classi-
fications [17]. In this project, these type of masks are generated to label the data.

First, Python is used to rasterize the combined geometry of the forest wildfire polygon data
and the downloaded post-wildfire RGB satellite imagery. Specifically, the forest wildfire
polygons are accessed in Python using GeoPandas [18] and reprojected to match the coor-
dinate system of the satellite imagery (EPSG:4326). Then, each post-wildfire RGB image is
locally and temporarily downloaded from Google Drive, with essential properties such as
width, height, transform, and bounds extracted using the rasterio library [19]. Next, the
geometry column from the forest wildfire polygon data is extracted and intersected with
each image bound using Python’s shapely [20] library. Finally, binary masks are created
by rasterizing the combined geometries. These masks match the dimensions of the satellite
images, ensuring that each pixel labeled as wildfire damage corresponds directly to the
polygon data (see Program 2). The binary masks are saved temporarily in GeoTIFF format
and are uploaded to a dedicated Google Drive folder. All the temporary local files were
deleted to clear space and maintain system efficiency.
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# Authenticate into EE
ee.Authenticate()

# Initialize EE
ee.Initialize()

# Initialize a list for iteration
indices = []
for i in range(0, x):  # modify depending on your number of data points
    indices.append(i)

# Define the bands you want to download
bands_rgb = ['B4', 'B3', 'B2']  # Red, Green, Blue

event_type = 'before'  # Toggle this to 'after' as needed

for i in indices:
    # Set the center point of the wildfire polygon
    center_point = ee.Geometry.Point(round(data[i][1], 2), round(data[i][2], 2))

    # Select an image from the specified satellite collection for the center point
    tile = ee.ImageCollection('COPERNICUS/S2') \  # Define the satellite imagery you will be working
with, in this case Sentinel 2
        .filterBounds(center_point) \
        .filterDate(data[i][3], data[i][4]) \  # Define a date range for the satellite image
        .sort('CLOUDY_PIXEL_PERCENTAGE') \  # Organize the images based on the % cloud cover
        .first()  # Get the image with the lowest cloud cover

    # Check the properties of the image
    image_properties = tile.getInfo()
    cloudy_percentage = image_properties.get(
        'properties', {}).get('CLOUDY_PIXEL_PERCENTAGE', 0)  # Obtain the exact percentage of cloud
cover for each image

    # Proceed if the image has less than 10% cloud coverage
    if cloudy_percentage <= 10:
        # Define the Region of Interest (ROI) using the provided coordinates
        roi = ee.Geometry.Polygon([[
            [data[i][9], data[i][10]],
            [data[i][11], data[i][12]],
            [data[i][13], data[i][14]],
            [data[i][15], data[i][16]],
            [data[i][17], data[i][18]]]])

        # Select the RGB bands from the image
        rgb_tile = tile.select(bands_rgb)

        # Export RGB image to Google Drive
        rgb_task = ee.batch.Export.image.toDrive(**{
            'image': rgb_tile,
            'description': f'RGB_{event_type}Fire'
            + str(data[i][0]),  # Descriptive name for the task
            'folder': f'GEE_FireImagesRGB_{event_type}',  # Folder in Google Drive to save the image
            'scale': 10,  # Adjust the scale as needed
            'region': roi.getInfo()['coordinates'],  # Region of Interest for the export
            'crs': 'EPSG:4326',  # Coordinate reference system
            'fileFormat': 'GeoTIFF',  # File format for the export
        })
        rgb_task.start()

        # Monitor the task status until it completes or fails
        while not rgb_task.status()['state'] in ['COMPLETED', 'FAILED', 'CANCELLED']:
            print(f'RGB Task for {event_type} fire is', rgb_task.status()['state'])
            # Add a short wait before checking again

        # Check the final task status
        rgb_task_status = rgb_task.status()
        print(f"RGB Task Status for {event_type} fire:", rgb_task_status)
        print(f"RGB Task Error Message for {event_type} fire:", rgb_task_status.get("error_message",
"No error message"))
    else:
        # Skip images with more than 10% cloud coverage
        print(f"Skipping image {i} due to cloudy percentage ({cloudy_percentage} %) > 10 %")

Program 1.  Script to automate the download of pre- or post-wildfire images using GEE’s Python API. It
iterates through a DataFrame
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Figure 2.  Example of a pre and post-wildfire RGB image pair of a forested area downloaded using GEE’s
Python API.

In the resulting ground truth masks, the pixel values are set to zero if they are outside of a
wildfire polygon, indicating unaffected areas, and set to one if they are within the polygon
boundaries, indicating areas affected by a forest wildfire. Figure 3 displays an example of
a resulting ground truth mask.

2.4. Image Segmentation and Data Preparation for Deep Learning Architectures

Next, the satellite images and their corresponding ground-truth masks are cropped into
smaller tiles that maintain the imagery’s spatial resolution (10m). Often, satellite imagery
needs to be resized and downscaled to accommodate deep learning (DL) architectures,
which can result in the loss of essential details such as subtle indicators of early-stage
wildfires. Moreover, using smaller images enhances the efficiency of DL models by lowering
computational demands and speeding up training times [21], [22].

To do this, a tile size of 256x256 pixels is specified and each RGB image is downloaded
individually from Google Drive to a temporary local folder. Using Python’s rasterio library,
the original RGB images are opened to obtain their dimensions. Then, the number of rows
and columns for the tiles is calculated based on the chosen tile size. Next, a rasterio Window
object is used to extract the corresponding portion from the original image and read the
RGB data, ensuring the order of the bands (B4, B3, and B2).

The segmented RGB tiles are then saved as GeoTIFF files using the tifffile Python library [23].
This is a critical step to maintain the integrity of the three-channel RGB data, as the rasterio
library alone can alter the color of the images during saving. Additionally, the metadata of

July 10, 2024 371



GeoImagery Dataset Development for DL-Driven Forest Wildfire Detection  | Martin et al., 2024

import geopandas as gpd
import numpy as np
import rasterio
from shapely.geometry import box, shape
import os

# Define the path to your Shapefile - replace with your specific path
shapefile_path = "YourShapefileDirectory/FirePolygons.shp"

# Read the Shapefile using geopandas
gdf = gpd.read_file(shapefile_path)

# Reproject the shapefile to EPSG:4326 to match the satellite imagery coordinate system
gdf = gdf.to_crs(epsg=4326)

# Create a directory to store the output raster masks if it doesn't already exist
output_dir = "raster_masks"
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

# Iterate through the rows in the attribute table
for index, row in gdf.iterrows():
    object_id = row["OBJECTID"]
    image_path = f"YourImageDirectory/RGB_AfterFire{object_id}.tif"
    # Check if the image exists
    if os.path.exists(image_path):
        # Open the image using rasterio
        with rasterio.open(image_path) as src:
            image_width = src.width
            image_height = src.height
            image_transform = src.transform
            image_bounds = box(
                src.bounds[0], src.bounds[1],
                src.bounds[2], src.bounds[3]
            )

        # Extract the geometry column
        geom = shape(row["geometry"])
        clipped_geom = geom.intersection(image_bounds.envelope)

        if not clipped_geom.is_empty:
            # Create a two-dimensional label by rasterizing the
            # clipped geometry
            clipped_mask = rasterio.features.geometry_mask(
                [clipped_geom],
                out_shape=(image_height, image_width),
                transform=image_transform,
                invert=True,
            )

            # Save the image with the two-dimensional label overlay
            output_image_path
            = f"{output_dir}/Masked_{object_id}.tif"
            with rasterio.open(
                output_image_path,
                "w",
                driver="GTiff",
                width=image_width,
                height=image_height,
                count=1,
                dtype=np.uint8,
                crs=src.crs,
                transform=image_transform,
            ) as dst:
                dst.write(clipped_mask.astype(np.uint8), 1)

Program 2.  Building Ground Truth Masks

the saved tiles is updated to include georeferencing information and to modify parameters
such as width, height, and transform (see Program 3).

A similar approach is used to segment the binary masks, specifying that the images contain
only one band.
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Figure 3.  Example of a resulting ground truth mask in a forested area affected by wildfires. The mask
highlights wildfire-affected areas in yellow and unaffected areas in purple. This binary mask is used to
train and validate deep learning models for accurate wildfire detection.

By combining the capabilities of rasterio for efficient geospatial data handling and the
tifffile library for preserving the RGB data during saving, the original images are cropped
into smaller RGB tiles. This approach preserves the resolution and the georeferencing
information of the images, preparing them to train DL applications.

2.5. Data Augmentation for Wildfire Damage Detection

It is essential to have a balanced dataset that includes both forest wildfire-affected and
unaffected areas. Initially, the dataset comprised 82,082 tiles, but only 4,847 of these showed
signs of wildfire damage, indicating a significant class imbalance. This could lead to over-
fitting, with the model biased towards undamaged landscapes.

To address this imbalance and enhance the model’s accuracy in detecting wildfire-affected
areas, data augmentation techniques are implemented. Specifically, functions using the
rasterio and NumPy [24] libraries are developed to perform image transformations, which
include rotating the GeoTIFF tiles by 90°, 180°, and 270°, and flipping them horizontally and
vertically. These transformations are applied to the imagery and the mask tiles that contain
fire polygons and to their corresponding pre-wildfire RGB GeoTIFF tiles.

Finally, the augmentation process increased the diversity of the training data and resulted
in a total of 106,317 pairs of labeled RGB GeoTIFF image tiles, with 29,082 positive instances
(wildfire damage), improving the class balance.

Figure  5 illustrates the data augmentation process applied to the satellite imagery. The
original image tile is shown alongside its augmented versions, which include rotations and
flips. This augmentation increases the diversity of the dataset, helping to balance the classes
and improve the model’s ability to detect wildfire-affected areas accurately.
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from rasterio import Window
from tifffile import imwrite

# Function to save image tiles without changing the data type
def save_rgb_tiles(image_path, output_folder, tile_size, parent_name):
    # Open the source image file
    with rasterio.open(image_path) as src:
        height = src.height # Get the height of the source image
        width = src.width # Get the width of the source image

        # Calculate the number of tiles in both dimensions
        num_rows = height // tile_size
        num_cols = width // tile_size

        tile_counter = 1  # Initialize the tile counter

        # Iterate over the number of rows of tiles
        for i in range(num_rows):
            # Iterate over the number of columns of tiles
            for j in range(num_cols):
                # Define the window for the current tile
                window = Window(j * tile_size, i * tile_size, tile_size, tile_size)

                # Read the original data without modifications
                # Assuming band order B4, B3, B2
                tile = src.read((1, 2, 3), window=window)
                # Create a unique name for the tile
                tile_name = f"{parent_name}_tile_{tile_counter}.tif"
                # Define the path to save the tile
                tile_path = os.path.join(output_folder, tile_name)

                # Save the tile using tifffile without changing
                # data type
                imwrite(tile_path, tile)

                # Copy the metadata from the source image
                meta = src.meta.copy()
                # Get the transformation matrix for the current window
                transform = src.window_transform(window)
            # Update the metadata with the new dimensions and transformation
                meta.update({
                    'width': tile_size,
                    'height': tile_size,
                    'transform': transform
                })
              # Save the tile with updated metadata using rasterio
                with rasterio.open(tile_path, 'w', **meta) as dst:
                    dst.write(tile)
                tile_counter += 1  # Increment the tile counter

Program 3.  Function to Crop RGB Image Tiles

3. Evaluating the CWGID Using Convolutional Neural Networks

Figure 4.  Example of cropped pre- and post-wildfire images and their corresponding label.
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Figure 5.  Representation of the data augmentation performed to the 256px*256px tiles to increase
positive examples of wildfire damage.

The CWGID is tested for demonstration purposes using the well-known CNN architectures
VGG16 and EfficientNet, both implemented using Python’s TensorFlow’s Keras API. It is
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important to mention that both models were executed locally on a MacBook Pro equipped
with a 2.4 GHz Intel Core i9 processor and 16 GB of 2400 MHz DDR4 memory.

Satellite image data usually requires significant storage and processing power because
each image contains a large amount of data across the chosen spectral bands and stores
important geographic information. Hence, the scale and speed of model training observed
in the results below is constrained.

For users with access to high-performance computing clusters or cloud-based GPU
instances, processing times can significantly reduce.

3.1. VGG16 Implementation

VGG16 [25] is a deep CNN designed for image processing and classification tasks. It consists
of 13 convolutional layers, 5 pooling layers, and 3 fully connected layers. This model is
adapted to train on the dataset and detect positive and negative instances of forest wildfires.
The VGG16 architecture only trains on the post-wildfire 3-channel RGB imagery (i.e., images
collected prior to the wildfire were not used with VGG16), which contains both.

To use this CNN architecture with GeoTIFF satellite images, which typically store geographic
data not supported by most deep-learning libraries, a custom function is implemented to
process and feed the data to the model using the rasterio library and the shuffle function
from the Scikit-learn library [26], [27]. This function (see Program 4) is crucial for handling
the unique structure of GeoTIFF files and converting them into a format suitable for deep
learning. It is designed to read batches of GeoTIFF files, shuffle them to ensure randomness,
and process them into a three-dimensional array compatible with VGG16. Here is how it
works:

• File Paths Initialization: The function starts by taking the file paths of the GeoTIFF
images and shuffling them using the shuffle function from Scikit-learn to ensure the
batches are randomly ordered.

• Batch Processing: It processes the images in batches of 32 files. For each batch, the
function initializes empty lists for images and labels.

• Reading and Transforming Images: It reads each GeoTIFF file using rasterio. The
images are then transformed to have the channels last (i.e., changing the format from
channels, height, width to height, width, channels) to use with Keras.

• Labels are assigned based on the presence of “Damaged” in the file paths. Specifically,
if the file path contains the string “/Damaged/”, the image is labeled as 1 (indicating it
shows a damaged area). If the file path does not contain this string, the image is labeled
as 0 (indicating it shows an undamaged area). In this method, the ground-truth masks
are not directly used but are leveraged to define the imagery file paths.

• Yielding Batches: Finally, the function yields batches of images and labels as Numpy
arrays, which are then fed into the VGG16 model for training.

To detect wildfire-affected areas with VGG16, the model is initiated using the pre-trained
weights from the ImageNet dataset. The convolutional base is frozen to preserve the
integrity of the learned features and to focus on the training of the added layers. A Flatten
operation is applied to the output to transform the two-dimensional feature maps into a
one-dimensional vector. Then, a fully connected dense layer with 512 neurons, L2 regular-
ization, and ReLU activation is added. A Dropout layer with a rate of 0.5 is included to
further prevent overfitting. Finally, the network becomes a single-neuron dense layer with
a sigmoid activation function that produces a probability score of wildfire damage. Before
training, class weights are calculated using the Scikit-learn library. Furthermore, Keras
callbacks are set up for early stopping and model checkpointing to avoid overfitting.
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from sklearn.utils import shuffle

# Define the base paths for training and testing
base_training_path = "Insert your training file path"
base_testing_path = "Insert your testing file path"

def custom_image_generator(file_paths, batch_size):
    while True:
        file_paths = shuffle(file_paths)

        for i in range(0, len(file_paths), batch_size):
            batch_files = file_paths[i : i + batch_size]
            images, labels = [], []

            for file in batch_files:
                with rasterio.open(file) as src:
                    image = src.read()
                    # Channels last
                    image = np.moveaxis(image, 0, -1)

                label = 1 if "/Damaged/" in file else 0
                images.append(image)
                labels.append(label)

            yield np.array(images), np.array(labels)

Program 4.  Custom Function to Feed GeoTIFF Files to the VGG16 Model: The function reads batches of 32
GeoTIFF files - shuffles them - and processes them into a three-dimensional array compatible with VGG16.

The complete model is compiled with the Adam optimizer [28], binary cross-entropy loss
[29], and accuracy, precision, and recall as the performance metrics (see Program 5). The
Adam optimizer is chosen because it adapts the learning rate during training. In the context
of satellite image classification, where the landscape can vary significantly across images,
Adam’s ability to adjust the learning rate is important. Also, the binary cross-entropy loss
is chosen because it is tailored for binary classification tasks, such as classifying between
damaged and undamaged forested areas in satellite images.

The VGG16 model is trained and validated on 49313 three-channel RGB images (divided as
follows: 90% for training and 10% for validation) and is tested on 5479 images. Training
took around 1010 minutes for 10 epochs. The detailed training and validation performance
metrics for each epoch are provided in Table 1. The graphs showing the changes of the
training and validation metrics over the 10 epochs can be seen in Figure 6.

During the training process, the model’s performance on the training set showed a consis-
tent increase in accuracy, precision, and recall. Specifically, the training accuracy improved
from 0.6729 in the first epoch to 0.7692 in the tenth epoch. The precision increased from
0.7241 to 0.8622, and the recall fluctuated but overall showed an upward trend, starting at
0.6229 and ending at 0.6742.

On the validation set, the performance metrics also exhibited positive trends. The validation
accuracy began at 0.7291 and varied across the epochs, reaching 0.7527 by the final epoch.
Validation precision improved from 0.7689 in the first epoch to 0.8164 in the tenth epoch,
while validation recall started at 0.6812 and ended at 0.6760.

3.2. EfficientNet Implementation

EfficientNet [30] is a CNN architecture that uniformly scales network width, depth, and
resolution with a fixed set of scaling coefficients. EfficientNet’s architecture begins with a
base model, EfficientNet-B0, designed to find the optimal baseline network configuration.
The following versions of the network are further scaled versions of B0, offering multiple
models for different computational budgets.
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from keras.models import Model
from keras.layers import Flatten, Dense
from keras.optimizers import Adam
from keras.applications import VGG16
from keras.metrics import Precision, Recall

# Define the base model using pre-trained ImageNet weights
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(256, 256, 3))

# Freeze the convolutional base to prevent weights from being updated
for layer in base_model.layers:
    layer.trainable = False

# Add custom layers on top of the base model
x = Flatten()(base_model.output) # Flatten the output to make it suitable for dense layers
x = Dense(512, activation='relu', kernel_regularizer='l2')(x) # Add a dense layer with 512 units, L2
regularization and ReLU activation
output = Dense(1, activation='sigmoid')(x) # Output layer with a sigmoid activation for binary
classification

# Construct the complete model
model = Model(inputs=base_model.input, outputs=output)

#Callbacks to prevent overfitting
early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)
model_checkpoint = ModelCheckpoint('best_modelVGG16.keras', monitor='val_loss', save_best_only=True)

# Compile the model with Adam optimizer and binary cross-entropy loss
model.compile(optimizer=Adam(learning_rate=0.0001),
              loss='binary_crossentropy',
              metrics=['accuracy', Precision(), Recall()])

Program 5.  Adaptation of VGG16 for Wildfire Damage Detection

For this project, Efficient-B0 is adapted, trained, and tested using pre- and post-wildfire RGB
GeoTIFF imagery pairs from the CWGID. To do this, an approach commonly known as Early
Fusion (EF) is employed, where six-channel GeoTIFF files that combine the image pairs into
a single input are built (see Figure 7). To use this, a custom function that allows the use of 6-
channel GeoTIFF data with Efficient-B0 is built with the rasterio library and Keras’ Sequence
function (see Program 6).

Furthermore, the data labeling and its use are formulated using the same pipeline as VGG16,
by specifying the base paths to the training and testing directories for both damaged and
undamaged classes. As above, the labeling of this model is based on the presence or the
absence of ‘Damaged’ in the imagery file paths. The base EfficientNet-B0 model is then

Table 1.  Performance Metrics for Training and Validation Sets Using VGG16 Across Epochs.

Epoch Training
Accuracy

Training
Precision

Training
Recall

Validation
Accuracy

Validation
Precision

Validation
Recall

1/10 0.6729 0.7241 0.6229 0.7291 0.7689 0.6812

2/10 0.7406 0.7892 0.6992 0.7471 0.7716 0.7256

3/10 0.7537 0.8079 0.7052 0.7473 0.7729 0.7261

4/10 0.7555 0.8306 0.6788 0.7541 0.7899 0.7155

5/10 0.7568 0.8354 0.6765 0.7543 0.8070 0.6906

6/10 0.7632 0.8439 0.6813 0.7539 0.8226 0.6655

7/10 0.7653 0.8514 0.6768 0.7569 0.8049 0.6998

8/10 0.7661 0.8504 0.6803 0.7635 0.8228 0.6887

9/10 0.7680 0.8536 0.6808 0.7504 0.8771 0.6008

10/10 0.7692 0.8622 0.6742 0.7527 0.8164 0.6760
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Figure 6.  Graphic Representation of the Performance Metrics for the Training and Validation Sets Using
VGG16 Across 10 Epochs.

Figure 7.  Representation of a 6 Channel RGB GeoTIFF Input. A: Representation of a 3-channel RGB
GeoTIFF forested area before a wildfire B: Visual example of a 3-channel RGB GeoTIFF forested area after
a wildfire.

loaded without its top layers (classification layers) and without pre-trained weights, as the
pre-trained weights are specific to 3-channel images. A Global Average Pooling layer is used
to reduce the spatial dimensions of the feature maps. To reduce overfitting, a Dropout layer
is added with a specified rate of 30

The model is built with an input tensor defined to accept 256px by 256px images with six
channels. Initially, a standard convolutional layer is applied to this input tensor to perform
an initial convolution operation, reducing it to a three-channel format. The base Efficient-
Net-B0 model is loaded both without the top layers (classification layers) and the pre-trained
weights, as these were trained using 3-channel images. A Global Average Pooling layer is
used to reduce the spatial dimensions of the feature maps. To reduce overfitting, a Dropout
layer is added with a specified rate of 30%. Following this, a dense layer is also added
with 1024 neurons and ReLU activation (see Program 7). In the end, the network outputs a
probability indicating the likelihood of the image showing ‘damaged’ versus ‘undamaged’
areas.

Before training, class weights are calculated using the Scikit-learn library. Furthermore,
Keras callbacks are set up for early stopping, model checkpointing, and reducing the
learning rate when the validation loss plateaus, which helps optimize the training process.
As VGG16, the model is compiled with the Adam optimizer and binary cross-entropy loss,
with accuracy, precision, and recall as performance metrics.

For testing purposes, this EF architecture is trained on 23833 pre- and post-wildfire image
pairs (divided as follows: 90% for training and 10% for validation) and is tested on 2716 pre-
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from keras.utils import Sequence
# Custom Data Generator for Six-Channel Images

class SixChannelGenerator(Sequence):
    # Change this depending on your own data
    # Initialize the generator
    def __init__(
        self,
        file_paths, # List of file paths to the six-channel GeoTIFF images
        labels, # Corresponding labels for the images
        batch_size=32, # Number of images to be returned in each batch
        dim=(256, 256), # Dimension of the images
        n_channels=6, # Number of channels in the images (6 in this case)
        shuffle=True, # Shuffle the data at the end of each epoch
    ):
        self.file_paths = file_paths
        self.labels = labels
        self.batch_size = batch_size
        self.dim = dim
        self.n_channels = n_channels
        self.shuffle = shuffle
        self.on_epoch_end()
    # Define the number of batches
    def __len__(self):
        return int(np.ceil(len(self.file_paths) / self.batch_size))
    # Generate batch of data
    def __getitem__(self, index):
        # Generate indices of the batch
        batch_paths = self.file_paths[
            index * self.batch_size: (index + 1) * self.batch_size
        ]
        batch_labels = self.labels[
            index * self.batch_size: (index + 1) * self.batch_size
        ]
        # Initialize the arrays for the batch data and labels
        batch_x = np.empty(
            (len(batch_paths), *self.dim,
             self.n_channels), dtype=np.float32
        )
        batch_y = np.array(batch_labels, dtype=np.float32)
        # Load and read the data for each file in the batch
        for i, path in enumerate(batch_paths):
            with rasterio.open(path) as src:
    # Read the image and select the first 'n_channels' channels
                img = src.read()[: self.n_channels,
                                 : self.dim[0],
                                 : self.dim[1]]
    # Convert from channels_first to channels_last format
                img = np.moveaxis(img, 0, -1)
                batch_x[i,] = img / 255.0  # Normalize images to [0, 1] range

        return batch_x, batch_y
    # Shuffle the data at the end of each epoch
    def on_epoch_end(self):
        if self.shuffle:
            temp = list(zip(self.file_paths, self.labels))
            np.random.shuffle(temp)
            self.file_paths, self.labels = zip(*temp)

Program 6.  Custom Function to Feed Multi-Channel GeoTIFF Files to the EfficientB0 Model

and post-wildfire image pairs. Training took around 930 minutes for 13 epochs. The detailed
training and validation performance metrics for each epoch are provided in Table  2.
Furthermore, the graphs depicting the changes of the training and validation metrics over
the 13 epochs can be seen in Figure 8.

During the training process, the model’s performance on the training set showed a consis-
tent increase in accuracy, precision, and recall. Specifically, the training accuracy improved
from 0.7971 to 0.9588, precision increased from 0.7204 to 0.9665, and recall increased from
0.4053 to 0.8776 over the same period.
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from keras.layers import Input, Conv2D, Dense, GlobalAveragePooling2D, Dropout
from keras.models import Model
from keras.applications import EfficientNetB0
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

# Model Adaptation for Six-Channel Input

# Change this depending on your own data
def create_efficientnet_six_channel(input_shape=(256, 256, 6), dropout_rate=0.3):
    input_tensor = Input(shape=input_shape)
    x = Conv2D(3, (3, 3), padding='same', activation='relu')(input_tensor)
    base_model = EfficientNetB0(
        include_top=False, input_tensor=x, weights=None)
    x = GlobalAveragePooling2D()(base_model.output)
    x = Dropout(dropout_rate)(x)
    x = Dense(1024, activation='relu')(x)
    output = Dense(1, activation='sigmoid')(x)
    model = Model(inputs=input_tensor, outputs=output)
    return model

# Initialize the model
model = create_efficientnet_six_channel()
# Model Training with Callbacks for Optimal Training Control
early_stopping = EarlyStopping(
    monitor='val_loss', patience=5, restore_best_weights=True)
model_checkpoint = ModelCheckpoint('yourmodel.keras', save_best_only=True)
reduce_lr = ReduceLROnPlateau(
    monitor='val_loss', factor=0.2, patience=2, min_lr=1e-6, verbose=1)

# Compile the model
model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy', Precision(), Recall()])

Program 7.  Initializing and Training EfficientNetB0 for Six-Channel Image Input

On the validation set, the performance metrics exhibited positive trends as well. The valida-
tion accuracy began at 0.7843, peaked at 0.9359 around the eighth epoch, and remained high
at 0.9333 by the final epoch. Validation, precision, and recall also showed improvements,

Table 2.  Performance Metrics for Training and Validation Sets Using EfficientNetB0 Across Epochs.

Epoch Training
Accuracy

Training
Precision

Training
Recall

Validation
Accuracy

Validation
Precision

Validation
Recall

1/13 0.7971 0.7204 0.4053 0.7843 0.7688 0.4973

2/13 0.8803 0.8299 0.6995 0.8703 0.7499 0.5754

3/13 0.8979 0.8599 0.7424 0.8152 0.8034 0.5404

4/13 0.9022 0.8668 0.7531 0.8179 0.7222 0.6024

5/13 0.9187 0.9016 0.7842 0.9125 0.7597 0.5647

6/13 0.9265 0.9156 0.8015 0.9310 0.7014 0.5948

7/13 0.9298 0.9181 0.8121 0.9363 0.7289 0.5726

8/13 0.9346 0.9260 0.8235 0.9359 0.7104 0.5946

9/13 0.9370 0.9274 0.8315 0.9057 0.7580 0.5464

10/13 0.9424 0.9387 0.8416 0.9291 0.7522 0.5835

11/13 0.9537 0.9590 0.8655 0.9333 0.9386 0.7959

12/13 0.9573 0.9644 0.8739 0.9363 0.9516 0.7959

13/13 0.9588 0.9665 0.8776 0.9333 0.9606 0.7757
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Figure 8.  Graphic Representation of the Fluctuation of the Performance Metrics for the Training and
Validation Sets Using EfficientNetb0 Across 13 Epochs.

with precision starting at 0.7688 and reaching up to 0.9606, while recall improved from
0.497 to 0.7757.

3.3. DL Results

The results in Table 3 compare the performance of the two neural network architectures
used on the CWGID. Each architecture’s performance metrics are assessed, including loss,
accuracy, precision, recall, and training time. Also, the percentage of the CWGID used to
train each architecture is specified.

Both models are trained with subsets of the CWGID dataset, with the 6-channel input EF
EfficientNet model and the VGG16 model using around 25% of the data.

The 6-channel input EfficientNet achieved the lowest loss (0.178) and highest accuracy
(92.6%), making it the most effective model in terms of overall performance. Its precision
was at 92.5% and its recall was 81.9%, indicating a strong ability to identify damaged areas
correctly with some missed detections.

VGG16, had a higher loss (0.718) with an accuracy of 76.4%. Its precision was 83.7% and its
recall was 68.9%. This architecture took a longer training time of 1010 minutes compared to
930 minutes for the EfficientNet model. The EfficientNet model shows a slight faster training
time when considering the amount of training epochs.

The 6-channel input EfficientNet demonstrated superior performance in accurately classi-
fying areas affected by wildfires with high precision and accuracy, making it an efficient
choice for applications where accurate assessments are critical. Moreover, it is important
to mention that VGG16 was tested with 6-channel inputs but proved computationally
intensive.

Table 3.  Performance Metrics of the Models.

Model 6-channel input EfficientNet VGG16

Data from the CWGID (%) 25 25

Loss 0.178 0.718

Accuracy 0.926 0.764

Precision 0.925 0.837

Recall 0.819 .689

Time (minutes) 933 1010
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4. Discussion
The methodology developed in this study facilitates the creation of large, reliable, and
cloud-free bi-temporal satellite imagery datasets, which are essential for accurate environ-
mental monitoring. Also, by leveraging historical and curated datasets for the labeling,
our approach maximizes the value of existing data, accurately labels the imagery, and
minimizes the need for manual labeling.

Furthermore, the methodology was successfully evaluated, as the CWGID enabled the
adapted CNN models to learn and identify the signs of wildfire damage with high accuracy,
specifically with the EF EfficientNet-B0 model. Additionally, the proposed methodology
produced a greater number of examples compared to other similar datasets in the field [7],
[31], [32], which can boost the performance of deep learning models, making them more
effective at detecting and analyzing environmental changes. Moreover, the high precision
and recall metrics for EfficientNet, particularly the recall of 81.9%, display the model’s
capacity to correctly identify wildfire-affected areas with fewer false negatives, which
remains critical for rapid and effective wildfire monitoring.

On top of that, the dataset’s bi-temporal collection of pre- and post-wildfire satellite imagery
also offers the possibility to use different and accurate approaches for detecting forest
wildfires with satellite imagery. The comparative analysis of VGG16 and EfficientNet shows
the advantage of employing a bitemporal approach to satellite imagery analysis under a
single input. By evaluating before and after images as coupled inputs, the model identifies
changes that a single post-event imagery might not reveal, as shown by VGG16.

5. Conclusion
This paper illustrates a Python methodology that integrates DL with satellite imagery to
enhance environmental monitoring. Specifically, the development of the California Wildfire
GeoImaging Dataset (CWGID) and its evaluation using DL architectures are outlined. The
approach explained throughout this work allows for accurate detection of forest wildfires,
as demonstrated using DL architectures, and can be applied to a broad range of environ-
mental issues beyond just wildfire detection. Firstly, historical data, Python-based tools, and
Google Earth Engine are leveraged to build and label a large, cloud-free Sentinel-2 satellite
imagery dataset depicting forest wildfire examples. Then, this dataset is used to train well-
known CNN architectures, enabling the effective detection of forest wildfires within the
satellite imagery. An accuracy of 92.6 % with the EfficientNetB0 model was obtained, indi-
cating the potential effectiveness of the methodology. Future studies will include using Fully
Convolutional Networks (FCNs), like U-Nets [5], because they allow pixel-wise classification.
It is anticipated that these networks will enhance the accuracy of detecting and mapping
wildfire-affected areas, leveraging the detailed ground truth masks included within the
CWGID.
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Abstract

Water column sonar data collected by echosounders are essential for fisheries and marine
ecosystem research, enabling the detection, classification, and quantification of fish and
zooplankton from many different ocean observing platforms. However, the broad usage of
these data has been hindered by the lack of modular software tools that allow flexible compo-
sition of data processing workflows that incorporate powerful analytical tools in the scientific
Python ecosystem. We address this gap by developing Echostack, a suite of open-source
Python software packages that leverage existing distributed computing and cloud-interfac-
ing libraries to support intuitive and scalable data access, processing, and interpretation.
These tools can be used individually or orchestrated together, which we demonstrate in
example use cases for a fisheries acoustic-trawl survey.

Keywords ocean sonar, echosounder, distributed computing, cloud computing, workflow
orchestration, data standardization

1. Introduction
Echosounders are high-frequency sonar systems optimized for sensing fish and zooplank-
ton in the ocean. By transmitting sound and analyzing the returning echoes, fisheries and
ocean scientists use echosounders to “image” the distribution and infer the abundance
of these animals in the water column [1], [2], [3] Figure  1. As a remote sensing tool,
echosounders are uniquely suitable for efficient, continuous biological monitoring across
time and space, especially when compared to net trawls that are labor-intensive and
discrete in nature, or optical imaging techniques that are limited in range due to the strong
absorption of light in water.

In recent years, echosounders have been installed widely on many ocean observing plat-
forms Figure 1, resulting in a deluge of data accumulating at an unprecedented speed from
all corners of the ocean. These extensive datasets contain crucial information that can help
scientists better understand the marine ecosystems and their response to the changing
climate. However, the volume of the data (100s of GBs to TBs [4]) and the complexity of
the problem (e.g., how large- scale ocean processes drive changes in acoustically observed
marine biota [5]) naturally call for a paradigm shift in the data analysis workflow.

It is crucial to have software tools that are developed and shared openly, scalable in
response to data size and computing platforms, easily interoperable with diverse analysis
tools and different types of oceanographic data, and straightforward to reproduce to facil-
itate iterative modeling, parameterization, and mining of the data. These requirements
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Figure 1.  (A) Echograms (sonar images formed by aligning echoes of consecutive transmissions) at two
different frequencies. Echo strength variation across frequency is useful for inferring scatterer identity. Sv
denotes volume backscattering strength (units: dB re 1 m⁻¹). (B) The variety of ocean observing platforms
with echosounders installed.

are challenging to meet by conventional echosounder data analysis workflows, which rely
heavily on manual analysis on software packages designed to be used with Graphic User
Interface (GUI) on a single computer [e.g., R. Korneliussen et al. [6], Y. Perrot et al. [7], Y.
Ladroit, P. C. Escobar-Flores, A. C. G. Schimel, and R. L. O’Driscoll [8] Echoview (https://
echoview.com/)]. Similarly, instead of storing data in manufacturer-specific binary formats,
making echosounder data widely available in a standardized, machine-readable format
will broaden their use beyond the original applications in fisheries surveys and specific
research cruises.

In this paper, we introduce Echostack, an open-source Python software suite aimed at
addressing these needs by providing the fisheries acoustics and ocean sciences communi-
ties with tools for flexible and scalable access, organization, processing, and visualization
of echosounder data. Echostack is a domain-specific adoption of the core libraries in the
Pandata stack, such as Zarr, Xarray, and Dask [9]. It streamlines the composition and
execution of common echosounder data workflows, thereby allowing researchers to focus
on the key interpretive stage of scientific data analysis. As echosounder data processing
frequently requires combining heterogeneous data sources and models in addition to
regular array operations, we designed the Echostack packages with modularity in mind, to
1) enable and facilitate broader code reuse, especially for routine processing steps that are
often shared across echosounder data workflows [10], and 2) promote flexible integration
of domain-specific operations with more general analytical tools, such as machine learning
(ML) libraries. The Echostack also provides a friendly on-ramp for researchers who are
not already familiar with the scientific Python software ecosystem but possess domain
expertise and can quickly benefit from “out-of-the-box” capabilities such as native cloud
access and distributed computing support.

Below, we will discuss what the Echostack tools aim to achieve in Section 2, outline the
functionalities of individual libraries in Section 3, demonstrate how Echostack tools can
be leveraged in Section 4, and conclude with a forward-looking discussion in the Section 5
section.
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2. Design approach and considerations

2.1. Goals and motivations

The development of the Echostack was motivated by our core goals to create software tools
that can be:

1. Easily leveraged to construct workflows tailored to different application scenarios,
2. Easily integrated with new data analysis methodologies, and
3. Easily scalable according to the available computing resources and platforms.

Traditionally, the bulk of echosounder data analysis takes place on shore in a post-
processing scenario, based on the acoustic data and related biological information (e.g.,
animal community composition and sizes derived from net catches) collected at sea and
stored on hard drives. More recently, thanks to increased access to high-bandwidth com-
munication and powerful embedded processing, scenarios requiring real-time capabilities
have emerged, including continuous streaming of data from long-term moorings [11] and
close-loop, adaptive sampling on autonomous vehicles [12]. Similarly on the rise are the
incorporation of new inference and ML methods into echosounder data analysis workflows
[13], [14], [15], [16], as well as a need for scalable and platform-agnostic computations that
work out-of-the-box on systems ranging from personal computers to the cloud. The latter
is particularly important for data workflows associated with ocean instruments such as
echosounders, as both small and big data scenarios are common and equally important: On
a sea-going research vessel, newly collected data are typically processed in small batches on
a few local machines; in oceanographic data centers, however, large volumes of data need
to be promptly ingested and made available for open use.

These requirements are challenging to fulfill by existing echosounder data processing
software packages, but are in fact key advantages of the Pandata open-source Python stack.
While some existing software packages do support real-time applications (e.g., Echoview
live viewing, MOVIES3D real-time display) and allow the incorporation of new analysis
methods [17], the exact code implementation may be limited by the data structures and
access allowed in a given package, as opposed to the flexibility afforded by Pythonic
programmatic composition. In terms of scalability, even though some existing packages
can achieve out-of-core computation via memory mapping [6], [8], the natural and optional
scalability across computing resources and platforms offered by Pandata libraries [9] sig-
nificantly reduces the code implementation overhead.

2.2. Other guiding principles

In addition to the above goals, our development was further guided by the following
principles, with the long-term goal of catalyzing community collaboration and workflow
transformation.

2.2.1. Accessibile and interoperable data:

Echosounder data have traditionally been viewed as a highly specialized, niche data type
that are hard to use and interpret despite the wealth of biological information embedded
in the datasets. This is in part due to the highly heterogeneous, instrument-specific
echosounder data format, as well as the inherent complexity in interpreting acoustic
backscatter data [2]. We aim to provide convenient, open software tools that facilitate the
creation of standardized data in a common, machine-readable format that is both easy to
understand and conducive to integrative analysis with other oceanographic datasets.
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2.2.2. Reproducible and shareable workflow:

Just like in many scientific domains, echosounder data analysis workflows are typically
built by researchers working closely within a single group, although knowledge sharing
and exchanges do occur in community conferences or workshops. As data volumes rapidly
increase and the urgency to comprehensively understand marine ecosystem functions es-
calates with global warming, efficient and effective collaboration across groups has become
crucial. Ensuring that analysis workflows can be easily reproduced and shared alongside
open, standardized data is key to scaling up our collective capability to extract information
from these data.

2.2.3. Nimble code adjustments:

As a domain-specific adaptation of the Pandata stack, we aim to develop and maintain a
“shallow” and nimble stack: we employ only moderate layers of abstraction and encapsu-
lation of existing functions and prioritize existing data structures unless modification is
absolutely necessary. This allows new features, enhancements, or bug fixes in the under-
lying dependency libraries to be either naturally reflected (in cases when there are no
breaking changes) or quickly incorporated (in cases when code changes are required) into
the Echostack tools. This approach also keeps the code easily readable for potential contrib-
utors, even though the exact operations may be highly domain-specific.

3. The Echostack packages

3.1. Functional grouping for package organization

In light of our goals and design principles, we aim for the Echostack libraries to be modular
software “building blocks” that can be mixed and matched, not only with other elements
within Echostack but also with tools from the wider scientific Python software ecosystem.
Rather than encapsulating all functionalities into a single, monolithic package like many
existing echosounder data analysis software [e.g., R. Korneliussen et al. [6] Echoview], the
Echostack packages are organized based on functional groupings that emerge in typical
echosounder data analysis workflows to enable flexible and selective installation and usage.
Similar to the design concept of the Pandata tools, such grouping also allows each package
in the Echostack to be independently developed and maintained according to natural vari-
ations of project focus and needs.

Typical echosounder data analysis workflows consist of the following common steps
Figure 2:

1. Read, align, and aggregate the acoustic data and associated biological data (the
“ground truth” from in situ samples) based on temporal and/or spatial relationships;

2. Infer the contribution of animals in different taxonomic groups to the total returned
echo energy; and

3. Derive distributions of population estimates (e.g., abundance or biomass) and behav-
ior (e.g., migration) over space and time for the observed animals.

The resulting biological estimates are then used in downstream fisheries and marine
ecological research and for informing resource management decisions. Also embedded in
these steps are the needs for:

• Interactive visualization of echo data and/or derived estimates, at different stages of
the workflow, which is crucial for understanding data and motivating downstream
analyses; and

• Robust provenance tracking of data origin and processing steps, which enhances the
reproducibility and shareability of the workflows.
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Figure 2.  Typical echosounder data analysis workflows.

In a fisheries acoustic-trawl survey – a typical use case – the overall goal is to estimate the
abundance and biomass of important fish and zooplankton species using a combination
of observational data and analytical models. The observational data include acoustic data
collected by the echosounders and biological data (animal species and sizes, etc) collected
by trawls. These data are linked in the acoustic inference step, which partitions the acoustic
observation into contributions from different animal groups in the water column based
on empirical models (which rely heavily on morphological features of animal aggregations
visualized on the echogram), physics-based models (which rely heavily on spectral or statis-
tical features of the echo returns), ML models (which can combine various data features
depending on the model setup), or a mixture of the above.

Based on the above, we identified natural punctuations in the typical workflows, and
grouped computational operations that serve coherent high-level functionalities into sepa-
rate packages Figure 3 that are described in the next section. The grouping decisions and the
current implementations were driven by our own project goals to accelerate information
extraction for a fisheries acoustic-trawl survey for Pacific hake (see Section 4 for detail)
through ML and cloud technology. However, as the examples will show, these packages can
be easily leveraged in different application scenarios.

Figure 3.  The Echostack packages are modularized based on functional grouping of computational
operations in echosounder data analysis workflows.
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Figure 4.  Summary of the Echostack packages and key dependencies.

3.2. Package functionalities

The Echostack includes five software packages (Echopype, Echoregions, Echopop,
Echoshader, and Echodataflow) that each handles a specific set of functionalities in general
echosounder data processing workflows Figure 3. In parallel, Echolevels provides specifi-
cations for a cascade of data processing levels from raw to highly processed data, to enhance
data sharing and usage. The Echostack packages jointly relies on a set of core dependencies
for interfacing with file systems (fsspec), data storage (netCDF and Zarr), and data organiza-
tion and computation (Xarray, Pandas, and Dask). Additionally, some libraries have specific
dependencies to support functionalities like interactive plotting (HoloViz), masking grids
based on regions (Regionmask), and workflow configuration (Pydantic) and orchestration
(Prefect), as shown in Figure 4.

The sections below provide brief descriptions of the functionalities of the Echostack pack-
ages, their current status, and future development plans.

3.2.1. Echopype:

Echopype (https://github.com/OSOceanAcoustics/echopype) is the workhorse that performs
the heavy lifting of data standardization and routine computation to generate data prod-
ucts that are suitable for downstream analysis. Acoustic (backscatter) data collected by
echosounders are typically stored in instrument-specific binary files along with metadata,
such as deployment configurations. The raw data are often recorded in sensor units (e.g.,
counts) that require calibration to be mapped to physically meaningful quantities (e.g.,
sound pressure). Analyses are typically performed on aggregated data sections based on
spatial and/or temporal logical groupings. For example, ship echosounder data are often
grouped based on survey transects, and mooring echosounder data are often grouped
into weekly or monthly sections. In addition, many analysis methods require data to be
uniformly gridded across all major dimensions, such as time, geographic locations (latitude/
longitude), and depth. Echopype provides functionalities for converting raw, binary data
files into a standardized representation following the netCDF data model, which can be
serialized into netCDF or Zarr files. It also provides functionalities for calibration, quality
control, aggregating data across files, and data regridding. It forms the data churning
backbone in Echostack-supported workflows, and encodes provenance and processing
level information as specified in Echolevels (see below). Echopype was the first package
developed in the Echostack and is described in detail in W.-J. Lee, E. Mayorga, L. Setiawan,
I. Majeed, K. Nguyen, and V. Staneva [18].

3.2.2. Echoregions:

Echoregions (https://github.com/OSOceanAcoustics/echoregions) is a lightweight package
that interfaces data products generated by Echopype, such as echograms, with annotations
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from humans or data interpretation algorithms, such as ML algorithms. These annotations
typically consist of “regions” that indicate the presence of specific animal species, or “lines”
that delineate ocean boundaries, such as seafloor or sea surface. As a lightweight interfacing
package, Echoregions makes it possible to construct independent workflow branches that
handle data interpretation annotations in concert with the data processing backbone and
the analysis algorithms. Currently, due to our project priorities, Echoregions primarily
supports the organization and generation of echogram analysis “masks” in ML problems
[19] with bi-directional interfacing functionalities: to parse and organize annotations to
prepare training and test datasets for ML developments (annotation to ML), and to generate
annotations from ML predictions to be used for further downstream processing (ML to
annotation). The current supported annotation formats are those generated by Echoview
(.EVR and .EVL files), which is widely used in the fisheries acoustics community to manually
analyze echograms. We plan to expand support for additional annotation formats and
update both the representation of annotations and the generated masks to align with
community conventions that may emerge in the near future.

3.2.3. Echopop:

Echopop (https://github.com/OSOceanAcoustics/echopop) functions as the “glue” that com-
bines echo measurements with biological data from trawls and acoustic backscattering
models to estimate spatial distributions of animal abundance, biomass, and other biolog-
ically meaningful metrics. Here, “pop” stands for animal “population” information that
can be obtained by analyzing echo data. Biological trawl samples typically yield species
compositions and associated biometrics, such as sex, length, age, and weight. Many of
these parameters are crucial for accurately configuring the acoustic backscattering models,
which strongly affect the estimates of biological quantities from echo data [2], which are
important for informing fishery management strategies and for characterizing regional
and global energy budgets. At present, the biological data agglomeration and echo data
analysis steps implemented in Echopop are configured to work specifically with a fisheries
acoustic-trawl survey targeting Pacific hake that is the focus of our project. However, the
majority of the functions are generally applicable to other fish and zooplankton species. We
therefore plan to expand the package to incorporate more general analysis functions in the
near future, including support for biological data obtained by other in-situ ground-truthing
methods, such as optical cameras [20].

3.2.4. Echoshader:

Echoshader (https://github.com/OSOceanAcoustics/echoshader/) enables interactive visual-
ization of echosounder data to accelerate the data exploration and discovery process. Here,
“shader” was inspired by Datashader, as echo data are often plotted as false color panels
encoded with magnitude information (e.g., Figure 1). Building on the HoloViz suite of tools,
Echoshader extends Xarray’s plotting functionality using accessors (https://docs.xarray.dev/
en/latest/internals/extending-xarray.html) to include variations that are widely used and
insightful for exploring and understanding echosounder data. For example, the absolute
and relative echo magnitudes measured at different frequencies can be used to classify
scatterers, and are typically visualized through joint displays of echograms at multiple
frequencies. Echograms are water column “profiles” that are often more meaningful when
inspected together with the ship track on a bathymetry map. Echoshader makes it possible
to create these plots directly from echosounder datasets generated by Echopype (which are
native Xarray datasets or data arrays), complete with control widgets such as frequency
selectors and color range sliders. In the next stage of development, we plan to integrate
external echogram region annotations (e.g., from Echoregions) into the functionality, opti-
mize performance for visualizing large datasets to enable efficient screening of historical
data, and compile a gallery of demo use cases as part of the documentation.
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3.2.5. Echodataflow:

Echodataflow (https://github.com/OSOceanAcoustics/echodataflow) is a package that pro-
vides users with an efficient way to define, configure, and execute complex echosounder
data processing workflows on either local or cloud platforms. It combines the power
of Prefect (https://www.prefect.io/), an open-source workflow orchestration tool, and the
flexibility of YAML configurations to leverage Echostack data processing functionalities in
a modular and user-friendly way. Instead of writing code, users prepare “recipes” that
are text-based configurations specifying data processing steps and associated parameters,
data sources and output storage locations, logging options, and computing resources.
Given a recipe, Echodataflow automatically translates these specifications into actions
and augments the processes with the robust error tracking and retry mechanisms from
Prefect. This makes it possible to systematically prototype and experiment with workflow
variations and efficiently transition a prototype to a stable data pipeline, improving the
collaboration between researchers, data engineers, and data managers. Currently, due to
our project priorities, Echodataflow supports Echopype and Echoregions functionalities as
well as custom functions that perform ML predictions and cloud data upload. We plan to
create functional templates for users to easily “wrap” their own workflow elements to use
with Echodataflow in the near future.

3.2.6. Echolevels:

Echolevels (https://github.com/OSOceanAcoustics/echolevels) is a set of proposed data pro-
cessing level definitions for echosounder data, rather than a software package. A concept
originated and championed by the satellite remote sensing community [21], “data process-
ing levels” are categorizations of the continuum of data at different processing stages, from
raw instrument-generated files to derived, often gridded and georeferenced data products
that are ready for analysis or interpretation. Similar to data conventions, clear processing
level definitions enhance data understanding and provenance tracking, which contribute
directly to broader data use. We have added the proposed processing levels as dataset attrib-
utes in the output data of different Echopype functions to test these definitions in practice,
and are collaborating with the echosounder user community to revise and improve them.

4. Example use cases
In this section, we present three example use cases of the Echostack libraries under the
application scenario of a fisheries acoustic-trawl survey. Here, we use the Joint U.S. and
Canada Pacific Hake Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey (aka the
“Hake survey”) as an example, as we are familiar with its context and setup for our project
to accelerate biological information extraction using ML and cloud technology. The Hake
survey dates back to the late 1990s when echosounder technology was first widely adopted
for fishery surveys. In recent years, this survey has occurred every odd-numbered year,
covering the coastal waters, shelf break, and open ocean along the entire west coasts of the
US and Canada [22].

The example use cases presented below demonstrate how Echostack tools are leveraged
in echosounder data analysis and management. The examples utilize both raw data files
archived in a data center and near real-time data continuously generated from a ship-
mounted echosounder. We show how these tools can be used in a mix-and-match manner
with each other and with other tools in the scientific Python software ecosystem to achieve
user goals. Note that not all Echostack libraries are used in all use cases, which highlights
the advantage of modular package design based on functional grouping.
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Figure 5.  Use case 1: Interactive data exploration and experimentation.

4.1. Use case 1: Interactive data exploration and experimentation

This is a common use case in which researchers interact with echosounder data through
the browser-based Jupyter computing interface on a cloud virtual machine Figure 5. They
first assemble a Zarr store consisting of calibrated echo data for a single survey transect by
directly processing a collection of raw files from a data center server (Echopype). They then
interactively visualize the data (Echoshader) and experiment with the influence of differ-
ent data cleaning options (Echopype and custom functions) on the resulting acoustically
inferred biomass of a fish species (Echopop). These experimentations help the research
identify parameters for setting up batch processing across all survey transects.

4.2. Use case 2: A ship-to-cloud ML pipeline

This is an experimental use case in which researchers construct a ship-to-cloud pipeline
that uses an ML model to analyze ship echosounder data in near real-time and send the
predictions and reduced data to the cloud for shore-side monitoring Figure 6. The pipeline
is orchestrated by Echodataflow, which manages data organization actions triggered by
new files and analysis-oriented actions through a scheduler. A “watchdog” monitors the
ship hard drive for newly generated raw echosounder data files, and continuously converts,
calibrates, regrids, and appends new echo data into a local Zarr store dedicated to ML
analysis (Echopype). At regular intervals, the last section in the Zarr store is sliced and fed
to an ML model to detect the occurrence of a target fish species on the echogram (custom
functions). The echo data are applied with the ML predictions (Echoregions) and used to
compute the abundance and biomass estimates (Echopop). The echo data slices are also
further downsampled (Echopype) and sent to a cloud Zarr store for interactive visual
monitoring (Echoshader). This pipeline paves the way for later optimization for an edge
implementation on autonomous platforms.

4.3. Use case 3: Mass production of analysis-ready, cloud-optimized (ARCO) data
products

This is a use case in which researchers or data managers create analysis-ready, cloud-
optimized (ARCO) echosounder data stores that can be readily drawn for analysis and
experimentation Figure  7. The pipeline is orchestrated by Echodataflow, which handles
the efficient distribution of bulk computing tasks, communicates with data sources and
destinations, and automatically logs and retries any processing errors. In the pipeline, in-
strument-generated binary data files sourced from a data center progress through multiple
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Figure 6.  Use case 2: A ship-to-cloud ML pipeline.

processing steps and are enriched with auxiliary data and metadata that may not exist in
the original binary form (Echopype). These steps span through multiple data processing
levels (Echolevels), at which data products are stored with full provenance to maximize re-
processing flexibility and usability. The data stores assembled under this use case can be
easily leveraged by researchers in Use case 1 to jump start their experimentation of data
cleaning parameters.

5. Discussion
Echostack is an open-source software suite under active development. It will continue to
evolve with the needs of the users and advancements in the scientific Python software
ecosystem, in particular the Pandata and derived libraries in the wider geosciences
domain. The Echostack tools were initially developed to address needs arising from our
own research projects, but we quickly realized the potential value of these tools as open
resources in the fisheries acoustic and ocean sciences communities. This paper serves as an
interim report that describes our design considerations and discusses current capabilities
and future plans together with three concrete use cases. Moving forward, we have two main
goals: 1) enhancing Echostack features and performance, and 2) cultivating community
user engagement. For the libraries, we aim to incorporate a wider set of echosounder
data processing and visualization functions, ensure scalability with large datasets, improve
documentation, and provide benchmark reports for library performance. For the commu-
nity, we aim to broaden the discussion on development priorities and encourage code

Figure 7.  Use case 3: Mass production of cloud-optimized, analysis-ready data products
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contribution from the user community, through intentional outreach efforts via both formal
(conferences and workshops) and informal (interactions on code repositories and emails)
channels. These goals are interdependent and form a positive feedback loop, as the more
useful the software tools are, the more likely people will use it and contribute to its
maintenance and development. The echosounder user community is diverse and includes
members with a wide range of technical experiences and practical considerations, and
would benefit from a suite of flexible tools that are both plug-and-play and customizable
to meet specific requirements. It is our hope that the Echostack software packages can
function as a catalyst for community-wide discussions and collaborations on advancing
data processing workflow and information extraction in this domain.

Acknowledgements

We thank Alicia Billings, Dezhang Chu, Julia Clemons, Elizabeth Phillips, and Rebecca
Thomas for discussions on code implementations and use cases, and Imran Majeed, Kavin
Nguyen, Praneeth Ratna, and Brandyn Reyes for contributing to the code. The software
development received funding support from NOAA Fisheries, NOAA Ocean Exploration,
NSF, NASA, and the Gordon and Betty Moore and Alfred P. Sloan Foundations (MSDSE
Environments), as well as engineering support from the University of Washington Scientific
Software Engineering Center funded by Schmidt Futures as part of the Virtual Institute for
Scientific Software.

References

[1] H. Medwin and C. S. Clay, Fundamentals of acoustical oceanography. Academic Press, 1998. doi: 10.1016/
B978-0-12-487570-8.X5000-4.

[2] T. K. Stanton, “30 years of advances in active bioacoustics: A personal perspective,” Methods in Oceanography,
pp. 49–77, 2012, doi: 10.1016/j.mio.2012.07.002.

[3] K. J. Benoit-Bird and G. L. Lawson, “Ecological insights from pelagic habitats acquired using active acoustic
techniques,” Annual Review of Marine Science, vol. 8, no. 1, pp. 463–490, 2016, doi: 10.1146/annurev-
marine-122414-034001.

[4] C. C. Wall, J. M. Jech, and S. J. McLean, “Increasing the accessibility of acoustic data through global access and
imagery,” ICES Journal of Marine Science: Journal du Conseil, vol. 73, no. 8, pp. 2093–2103, 2016, doi: 10.1093/
icesjms/fsw014.

[5] T. A. Klevjer, X. Irigoien, A. RR̸ stad, E. Fraile-Nuez, V. M. Benítez-Barrios, and S. Kaartvedt., “Large scale patterns
in vertical distribution and behaviour of mesopelagic scattering layers,” Scientific Reports, vol. 6, no. 1, p. 19873,
2016, doi: 10.1038/srep19873.

[6] R. Korneliussen et al., “The Large Scale Survey System - LSSS,” in Proceedings of the 29th Scandinavian Symposium
on Physical Acoustics, Ustaoset, Norway,  2006. [Online].  Available: https://api.semanticscholar.org/CorpusID:
204802910

[7] Y. Perrot et al., “Matecho: An Open-Source Tool for Processing Fisheries Acoustics Data,” Acoustics Australia, vol.
46, no. 2, pp. 241–248, 2018, doi: 10.1007/s40857-018-0135-x.

[8] Y. Ladroit, P. C. Escobar-Flores, A. C. G. Schimel, and R. L. O’Driscoll, “ESP3: An open-source software for the quan-
titative processing of hydro-acoustic data,” SoftwareX, vol. 12, p. 100581, 2020, doi: 10.1016/j.softx.2020.100581.

[9] J. A. Bednar and M. Durant, “The Pandata Scalable Open-Source Analysis Stack,” Proceedings of the 22nd Python
in Science Conference, pp. 85–92, 2023, doi: 10.25080/gerudo-f2bc6f59-00b.

[10] K. Haris, R. J. Kloser, T. E. Ryan, R. A. Downie, G. Keith, and A. W. Nau, “Sounding out life in the deep using acoustic
data from ships of opportunity,” Scientific Data, vol. 8, no. 1, p. 23, 2021, doi: 10.1038/s41597-020-00785-8.

[11] J. Trowbridge et al., “The Ocean Observatories Initiative,” Frontiers in Marine Science, vol. 6, 2019, doi: 10.3389/
fmars.2019.00074.

[12] M. A. Moline, K. Benoit-Bird, D. O'Gorman, and I. C. Robbins, “Integration of scientific echo sounders with an
adaptable autonomous vehicle to extend our understanding of animals from the surface to the bathypelagic,”
Journal of Atmospheric and Oceanic Technology, vol. 32, no. 11, pp. 2173–2186, 2015, doi: 10.1175/JTECH-
D-15-0035.1.

[13] O. Brautaset et al., “Acoustic classification in multifrequency echosounder data using deep convolutional neural
networks,” ICES Journal of Marine Science, vol. 77, no. 4, pp. 1391–1400, 2020, doi: 10.1093/ICESJMS/FSZ235.

July 10, 2024 396

https://doi.org/10.1016/B978-0-12-487570-8.X5000-4
https://doi.org/10.1016/B978-0-12-487570-8.X5000-4
https://doi.org/10.1016/j.mio.2012.07.002
https://doi.org/10.1146/annurev-marine-122414-034001
https://doi.org/10.1146/annurev-marine-122414-034001
https://doi.org/10.1093/icesjms/fsw014
https://doi.org/10.1093/icesjms/fsw014
https://doi.org/10.1038/srep19873
https://api.semanticscholar.org/CorpusID:204802910
https://api.semanticscholar.org/CorpusID:204802910
https://doi.org/10.1007/s40857-018-0135-x
https://doi.org/10.1016/j.softx.2020.100581
https://doi.org/10.25080/gerudo-f2bc6f59-00b
https://doi.org/10.1038/s41597-020-00785-8
https://doi.org/10.3389/fmars.2019.00074
https://doi.org/10.3389/fmars.2019.00074
https://doi.org/10.1175/JTECH-D-15-0035.1
https://doi.org/10.1175/JTECH-D-15-0035.1
https://doi.org/10.1093/ICESJMS/FSZ235


Echostack  | Lee et al., 2024

[14] C. Choi, M. Kampffmeyer, N. O. Handegard, A.-BR̸ . Salberg, and R. Jenssen, “Deep semisupervised semantic
segmentation in multifrequency echosounder data,” IEEE Journal of Oceanic Engineering, pp. 1–17, 2023, doi:
10.1109/JOE.2022.3226214.

[15] S. S. Urmy, A. De Robertis, and C. Bassett, “A Bayesian inverse approach to identify and quantify organisms from
fisheries acoustic data,” ICES Journal of Marine Science, p. fsad102, 2023, doi: 10.1093/icesjms/fsad102.

[16] Y. Zhang, C. C. Wall, J. M. Jech, and Q. Lv, “Developing a hybrid model with multiview learning for acoustic
classification of Atlantic herring schools,” Limnology and Oceanography: Methods, vol. 22, no. 5, pp. 351–368,
2024, doi: 10.1002/lom3.10611.

[17] L.-M. K. Harrison, M. J. Cox, G. Skaret, and R. Harcourt, “The R package EchoviewR for automated processing of
active acoustic data using Echoview,” Frontiers in Marine Science, vol. 2, 2015, doi: 10.3389/fmars.2015.00015.

[18] W.-J. Lee, E. Mayorga, L. Setiawan, I. Majeed, K. Nguyen, and V. Staneva, “Echopype: A Python library for
interoperable and scalable processing of water column sonar data for biological information,” arXiv:2111.00187
[eess], 2021, doi: 10.48550/arXiv.2111.00187.

[19] M. Hauser, A. Spring, J. Busecke, M. v. Driel, R. Lorenz, and readthedocs assistant, “regionmask/regionmask:
version 0.12.1.” [Online]. Available: https://zenodo.org/records/10849860

[20] K. Williams, N. Lauffenburger, M.-C. Chuang, J.-N. Hwang, and R. Towler, “Automated measurements of fish
within a trawl using stereo images from a Camera-Trawl device (CamTrawl),” Methods in Oceanography, vol. 17,
pp. 138–152, 2016, doi: 10.1016/j.mio.2016.09.008.

[21] R. Weaver, “Processing Levels,” in Encyclopedia of Remote Sensing, E. G. Njoku, Ed., in Encyclopedia of Earth
Sciences Series., New York, NY: Springer, 2014, pp. 517–520. doi: 10.1007/978-0-387-36699-9_36.

[22] Northwest Fisheries Science Center, Fishery Resource Analysis and Monitoring Division, “The 2021 Joint U.S.-
Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey: Cruise Report SH-21-06,” 2022, doi:
10.25923/0979-6D84.

July 10, 2024 397

https://doi.org/10.1109/JOE.2022.3226214
https://doi.org/10.1093/icesjms/fsad102
https://doi.org/10.1002/lom3.10611
https://doi.org/10.3389/fmars.2015.00015
https://doi.org/10.48550/arXiv.2111.00187
https://zenodo.org/records/10849860
https://doi.org/10.1016/j.mio.2016.09.008
https://doi.org/10.1007/978-0-387-36699-9_36
https://doi.org/10.25923/0979-6D84

	Organization
	Conference Chairs
	Program Chairs
	Communications
	Birds of a Feather
	Proceedings
	Financial Aid
	Tutorials
	Sprints
	Diversity
	Activities
	Sponsors/Financial/Logistics
	Hybrid
	Proceedings Reviewers

	Posters and Slides
	Keynote Presentations
	Accepted Talks
	Accepted Posters
	SciPy Tools Plenaries
	Lightning Talks

	Sponsored Students
	Scholarship Recipients
	NumFOCUS Diversity Scholarship Recipients

	Table of Contents
	Introduction
	Background and Concepts
	Interpolation Basics
	Grid Types
	Existing Interpolation Methods

	The multinterp Package
	Rectilinear Interpolation
	The Basics of Rectilinear Grids
	Multilinear Interpolation with multinterp
	Derivatives
	Multivalued Interpolation

	Curvilinear Interpolation
	Unstructured Interpolation
	Performance Comparisons
	Benchmark Setup
	Comparison with scipy.interpolate.RegularGridInterpolator
	Backend Comparison
	Discussion

	Future Work and Contributions
	Planned Features
	Community Contributions
	Documentation and Resources

	Conclusion
	References
	Introduction
	Core Concepts
	Memoization and the Computational Graph
	Call and Ref objects, and content/history IDs.

	Motivation for the Design of Memoization
	Why content and history IDs?
	Why memoization?

	Retracing as a Versatile Imperative Interface to the Stored Computation Graph

	Computation Frames
	Motivation and Intuition
	Formal Definition
	Basic Usage

	Main Extra Features
	Data Structures
	Versioning

	Related Work
	Limitations
	Conclusion
	Acknowledgements
	References
	Introduction
	Background
	Methodology
	Optical Flow Properties
	Autoregressive Modeling
	Training the model

	Results and Discussion
	Training the model using control and dyskinetic data

	Conclusions
	References
	Introduction
	Methodology
	Description of datasets
	Feature selection and model training

	Results and Discussions
	Conclusion
	Acknowledgement
	References
	Introduction
	Background
	Research Problem
	Related Work
	Research Objectives
	Significance of the Study
	Application in Planetary Defense: NASA's DART Mission

	Methodology
	Overview
	Development of Novel Open-Source PhAst
	Data Sources and Integration
	Observational Process
	Python Tools and Libraries

	Case Study: Didymos Binary Asteroid
	Initial Observations
	Impact Analysis

	Results
	Determining Physical Properties of Target Asteroids of Space Missions and Understudied Asteroids
	NASA LUCY Mission Targets
	UAE Mission Targets
	Binary Asteroids
	Understudied Asteroids


	Discussions
	Determining the Success of Asteroid Deflection
	Determining Asteroid Strength
	Determining Asteroid Taxonomy
	Early Solar System Conditions
	Errors and Limitations

	Conclusions
	Future Work
	Project Impact
	Acknowledgments
	References
	Introduction
	Related Work
	Proposed Model
	Algorithm
	Implementation - Encoding module
	Implementation - Detection Module
	Model Training, Testing and Efficiency
	Analysis of the Algorithm
	Conclusion
	References
	Introduction
	sktime and tsbootstrap for Reproducible Experiments
	Unified Interface
	Reproducible Specification Language
	Meta-Algorithms and Composability
	Probabilistic Metrics
	Benchmarking and Evaluation
	Prior Work

	Algorithmic Setup
	Forecasting Pipeline
	Component Forecasting Models
	Probabilistic Wrappers
	Bootstrapping Techniques
	Evaluation Metrics

	Experiments
	Experimental Setup
	Datasets
	Results
	Performance on Australian Electricity Demand
	Performance on Sunspot Activity
	Performance on US Births


	Discussion and Conclusion
	References
	Introduction
	Methods and Materials
	Hardware
	Installation of Voice In Plus
	Construction of the snippet libraries
	Construction of interactive quizzes
	Availability of the libraries and quizzes

	Results
	Composition of the libraries
	Libraries for Markdown cells
	Libraries for code cells
	Jupyter specific library
	Interactive quiz
	Limitations on using Voice In Plus

	Discussion
	Independence from breaking changes in Jupyter
	Voice-triggered snippets can complement AI-assisted voice computing
	Comparision with automated speech recogination extensions for Jupyter lab
	Coping with the imperfections of the language model

	Future directions
	References
	Introduction
	Background
	CellLabeler
	PixelExplorer
	CellExplorer
	SpaceExplorer
	Conclusion
	References
	Type Hints Improve Code Quality
	Elemental Type Annotations
	Array Type Annotations
	DataFrame Type Annotations
	Type Annotations with Other Libraries
	Conclusion
	References
	Introduction and Motivation
	Authoring Structured Content
	Computational Articles
	Continuous Science Practices
	Article Outline

	Authoring Tools
	Utility of Links and Identifiers
	Hover Previews for Content and Metadata
	Integrating Computational Content
	Single Source to Many Outputs

	Publishing
	Structural Checks
	Automated Actions
	Continuous Practices
	Use Cases

	Conclusions
	Acknowledgements
	References
	Introduction
	The Geospatial Neighborhood Analysis Package (geosnap)
	Data
	Demographics
	Environment
	Education
	Employment

	Harmonization
	Harmonizing to a Common Census Boundary
	Harmonizing to an Alternative Polygon

	Analysis
	Geodemographic Clustering & Regionalization
	Transitional Dynamics
	Travel Isochrones

	Conclusion

	References
	Introduction
	Motivation
	Methods
	Machine learning competition
	Carrying forward competition models
	Model experimentation
	User interviews


	Results
	Competition takeaways
	Model experimentation takeaways
	Data decisions
	Satellite feature engineering decisions
	Target variable decisions

	User interview takeaways
	CyFi
	Data sources
	Feature processing
	Model
	Performance
	Benchmark comparison
	Using CyFi
	CyFi Explorer


	Discussion
	Implications for use
	Future directions

	Conclusion
	Acknowledgements
	References
	Introduction
	Motivation: the demand to rapidly launch low-interactivity and plain-looking apps at scale
	Funix's default mapping from Python types to React components
	Customizing the type-to-widget mapping
	Supporting a new type on the fly using the new_funix_type decorator
	Defining and using themes

	Building apps Pythonically
	Default values as placeholders
	Making use of docstrings
	Output layout in print and return
	Streaming based on yield
	States, sessions, and multi-page apps
	A simple approach by using global
	Multi-page apps from classes


	The Funix decorators
	Overriding the type-based widget choice
	Automatic re-run triggered by input changes
	Conditional visibility
	Rate limiting
	Reactive apps
	Showing source code

	Jupyter support
	Showcases
	Wordle
	ChatGPT multi-turn
	Multimodal inputs
	Vector stripping in bioinformatics

	Conclusion
	Acknowledgments
	Introduction
	Related Works
	Our Contribution
	Materials and Methods
	Description of the data
	Data preprocessing
	Selected variables in the IceAGE database
	Spatial data
	Environmental data
	Climatic data

	Selected variables in the BOLDSystem database
	Taxonomic data

	Selected variables from article
	Other environmental data
	Genetic data

	aPhyloGeo software
	Metrics
	Robinson-Foulds distance
	Normalized Robinson-Foulds distance
	Euclidean distance

	Creating Figures

	Results
	Conclusion
	Acknowledgments
	References
	Introduction
	Related Work
	Model Share AI
	Key Functions
	Collaborative Model Development
	Model Registry
	Instant Model Deployment

	Architecture
	AIMS Workflow

	Impact
	Future Work
	Conclusion
	Acknowledgments
	References
	Introduction
	History of packaging
	Scikit-build (classic)
	Using scikit-build-core
	Binary Python package generation overview
	The simplest example
	Common needs as simple configuration

	Innovative features of scikit-build-core
	Dynamic requirement on CMake/Ninja
	Integration with external packages
	Dual editable modes with automatic recompile
	Dynamic metadata
	Overrides

	Scikit-build-core's design
	The configuration system
	The File API
	Plugins for other systems

	Adoption
	Statistics
	Rapids.ai
	Ninja / CMake / clang-format
	PyZMQ

	Related work
	Summary
	References
	Introduction
	Comparing Data Flows
	Existing Software
	Globus
	Rucio and iRODS
	Datalad and git-annex


	The Librarian
	Technology Choices
	Service Layout
	User and Librarian Management
	Storage Management
	Data Ingestion
	Data Cloning
	Data Access

	Data Down the Mountain
	Testing
	Deployment Details

	Conclusions
	Acknowledgements
	References
	Introduction
	Methodology
	Features
	Web Over Libraries
	Rapid Iteration
	Progressive Development
	Simplified Publishing

	Impact and Outlook
	Acknowledgements
	References
	Introduction
	Motivation
	Brief history of Wasm
	Wasm and scientific computing

	Methods
	Overview
	C++ core
	Build environment Docker images
	Command line interface (CLI)
	Language-specific libraries and idiomatic bindings
	Python environment dispatch
	Browser and system APIs

	Traditional file format support
	Artificial Intelligence and the Semantic Web

	Results
	Example application: generation of multiscale OME-Zarr images
	C++ pipeline definition
	Command line invocation
	Generating TypeScript packages from ITK-Wasm modules
	Node.js bindings
	Browser bindings
	TypeScript Interface Types
	WebWorker-based execution
	Parallelism with WebWorkerPool
	Automated package configuration
	Documentation and demo app

	Seamless Integration with Python Ecosystem
	Browser-based Pyodide Packages
	Cross-Platform Compatibility with WASI
	GPU Acceleration with cuCIM
	API Documentation and Pythonic Interfaces
	Efficient Serialization for Parallel Computing
	Broad Applicability in Scientific Computing


	Discussion
	Conclusion
	Links:
	Acknowledgments
	References
	Introduction
	Employing the Scientific Python ecosystem
	Uncovering the Higgs boson
	Loading data
	Cleaning and selecting data
	Feature engineering: The invariant mass
	Measurement uncertainties
	The "discovery" plot

	Conclusions
	References
	Introduction
	Details on Demand

	IPyWidgets
	State Synchronization
	Common Framework
	Limitations
	Components
	Events
	Custom Styling and Layout
	Custom IPyWidget Complexity


	Beyond Base IPyWidgets
	Vuetify Component Library
	Custom Vue Components

	IPyOverlay
	Implementing in IPyWidgets
	Embedding IPyWidgets in IPyOverlay Containers
	Connection Lines
	Context Menus
	Example Usage

	Conclusion
	Acknowledgements
	References
	Introduction
	Methods
	Images
	Datatypes
	Tasks

	Results
	Conclusion
	References
	Introduction
	Mathematical background
	Rough paths in data science
	The signature transform
	Signature kernels
	Neural controlled differential equations


	Current applications of rough paths
	Detecting interference in radio astronomy data
	Tracking mood via natural language processing
	Predicting battery cell degradation
	Prediction of sepsis in intensive care data
	Human action recognition

	RoughPy
	Free tensors, shuffle tensors, and Lie objects
	Intervals
	Streams
	Example
	The future of RoughPy

	Conclusions
	References
	Introduction
	State Space Models
	Continuous-time Representation
	HiPPO Framework for Long-Range Dependencies
	Discrete-time SSM: Recurrent Representation
	Training SSMs

	S4: A Structured State Space Model
	Diagonalization Problem
	The S4 Parameterization: Normal Plus Low-Rank (NPLR)
	S4 Algorithms and Complexity
	S4 Recurrence
	Parallel Associative Scan
	S4 Convolution
	S4 Architecture Details

	Mamba Model Architecture
	Key Differences Between Mamba and Transformer Architectures
	Architecture Overview
	Transformer Architecture
	Mamba Architecture

	Key Differences
	1. Attention Mechanisms vs. Selective State Space Models
	2. Computational Complexity
	3. Sequence Handling and Memory Efficiency


	Mamba's Synergy with Scipy
	Potential Applications and Future Directions:

	Conclusion
	References
	Background/Motivation
	What is a tradespace?
	Methods
	Panel
	Param
	Holoviews
	Plotly Express

	Results
	References
	Motivation
	Fisheries Acoustics Workflows
	User Stories
	Software Landscape
	Challenges
	Data Storage
	Computing Infrastructure



	Echodataflow Overview
	Why Prefect?

	Workflow Configuration
	Data Storage Configuration
	Pipeline Configuration
	Logging Configuration

	Workflow Execution
	Workflow Monitoring
	Workflow Logging
	Workflow Deployment
	Notebook
	Docker

	Command Line Interface
	Adding Stages
	Rule Validation
	Aspect-Oriented Programming (AOP) for Rule Validation


	Example Use Case: Processing Ship Survey Data from an Archive
	Future Development
	Beyond Fisheries Acoustics
	Acknowledgements
	References
	Introduction
	Building a Sentinel-2 Satellite Imagery Dataset
	Gathering and Refining Historic Wildfire Polygon Data from California
	Downloading the Imagery Data Using GEE's Python API
	Creating the Ground Truth Wildfire Labels
	Image Segmentation and Data Preparation for Deep Learning Architectures
	Data Augmentation for Wildfire Damage Detection

	Evaluating the CWGID Using Convolutional Neural Networks
	VGG16 Implementation
	EfficientNet Implementation
	DL Results

	Discussion
	Conclusion
	References
	Introduction
	Design approach and considerations
	Goals and motivations
	Other guiding principles
	Accessibile and interoperable data
	Reproducible and shareable workflow
	Nimble code adjustments


	The Echostack packages
	Functional grouping for package organization
	Package functionalities
	Echopype
	Echoregions
	Echopop
	Echoshader
	Echodataflow
	Echolevels


	Example use cases
	Use case 1: Interactive data exploration and experimentation
	Use case 2: A ship-to-cloud ML pipeline
	Use case 3: Mass production of analysis-ready, cloud-optimized (ARCO) data products

	Discussion
	Acknowledgements
	References

