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Abstract

Machine learning (ML) is revolutionizing a wide range of research areas and industries, but
many ML projects never progress past the proof-of-concept stage. To address this problem,
we introduce Model Share AI (AIMS), a platform designed to streamline collaborative model
development, model provenance tracking, and model deployment, as well as a host of
other functions aiming to maximize the real-world impact of ML research. AIMS features
collaborative project spaces and a standardized model evaluation process that ranks model
submissions based on their performance on holdout evaluation data, enabling users to
run experiments and competitions. In addition, various model metadata are automatically
captured to facilitate provenance tracking and allow users to learn from and build on previous
submissions. Furthermore, AIMS allows users to deploy ML models built in Scikit-Learn,
TensorFlow Keras, or PyTorch into live REST APIs and automatically generated web apps with
minimal code. The ability to collaboratively develop and rapidly deploy models, making them
accessible to non-technical end-users through automatically generated web apps, ensures
that ML projects can transition smoothly from concept to real-world application.

Keywords Machine Learning, MLOps, Model Deployment, Provenance Tracking,
Crowdsourcing

1. Introduction
Machine learning (ML) is revolutionizing a wide range of research areas and industries,
providing data-driven solutions to important societal problems. The success of many ML
projects depends on effective collaboration, rigorous evaluation, and the ability to deploy
models. Traditionally, researchers and practitioners have been using version-control sys-
tems like GitHub in combination with custom model evaluation and benchmarking exper-
iments to ensure reproducibility and to compare models. However, these systems tend to
lack easy-to-use, structured pathways specifically designed to collaboratively develop and
rapidly deploy ML models. Furthermore, the creation of custom resources for model evalu-
ation, benchmarking, and deployment, can require substantial upfront effort. As a result,
most models do not progress past the proof-of-concept stage and are never deployed [1], [2],
preventing a wider audience from participating in the promise of applied ML research.

While the recent rise of platforms like Hugging Face Hub [3], TensorFlow Hub [4], and
MLflow [5], [6], [7], illustrates the demand for open-source model repositories and MLOps
solutions, barriers of entry are still high for researchers, educators, and practitioners from
non-technical disciplines. Model Share AI (AIMS) addresses this problem by providing
a lightweight, easy-to-use alternative. In a few lines of code, users can create Model Play-
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grounds - standardized ML project spaces that offer an all-in-one toolkit for collaborative
model improvement, experiment tracking, model metadata analytics, and instant model
deployment, allowing researchers to rapidly iterate on ML models in one streamlined work-
flow. The present paper provides an introduction to AIMS by situating it in relation to other
current solutions and outlining its key functions, technical background, and workflow.

2. Related Work
The primary objective of AIMS is to offer an easy pathway to organize ML projects by
reducing common and complex tasks down to minimal code. Its approach builds on the
work of various projects focused on providing value for common ML tasks (e.g., model
improvement, version tracking, deployment, etc.). Currently, there are several open-source
tools and platforms, such as Hugging Face Hub [3], TensorFlow Hub [4], MLflow [5], [6],
[7], and OpenML [8], [9], [10], providing ML model repositories where researchers can find
and download model objects or deploy models. Hugging Face Hub [3] is a platform allowing
users to share pre-trained models, datasets, and demos of ML projects. It has GitHub-
inspired features for code-sharing and collaboration, such as discussions and pull requests,
and it includes a pathway for model deployment into API endpoints. Similarly, TensorFlow
Hub [4] is a repository and library for reusable ML in TensorFlow, enabling users to fine-
tune and deploy deep learning models. Deployment is facilitated by TensorFlow Serving
[11], which allows users to make their models accessible on a server through API endpoints.
MLflow [5], [6], [7] is an open-source platform that manages the end-to-end ML lifecycle.
It provides experiment tracking, code packaging, a model registry, model serving, and
integration with all popular ML frameworks. While Hugging Face Hub, TensorFlow Hub,
and MLflow are well suited for large-scale deep learning tasks, OpenML [8], [9], [10], focuses
more on classic ML and model reproducibility. Here, researchers can share, explore, and
experiment with ML models, datasets, and workflows, but there is currently no option
for model deployment. The OpenML API provides access through various programming
languages, but users can also employ an OpenML web interface to browse and visualize
data, models, and experiments.

Hugging Face Hub and TensorFlow Hub are primarily model-focused platforms, providing
repositories of pre-trained models that users can fine-tune for their specific purposes.
OpenML and MLflow, on the other hand, are more task-focused, emphasizing model
evaluation and benchmarking on standardized tasks. While all of these platforms are
extensively used by ML researchers and practitioners, including for industry-scale projects,
their wide range of features and customizations can be overwhelming for researchers
from non-technical disciplines, students, and educators. In comparison, AIMS stands out
by prioritizing ease of use and a hyper-collaborative approach. Unlike Hugging Face Hub
and TensorFlow Hub, AIMS emphasizes model metadata analytics and task-focused collab-
oration. Compared to MLflow, it offers more community-based features like competitions
that promote collective problem-solving and crowd-sourcing. Moreover, while OpenML
excels in model evaluation and benchmarking, AIMS provides additional capabilities for
model deployment, allowing users to share models directly from their local environment
into live REST APIs and auto-generated web applications. Taken together, the key distinc-
tions of AIMS are its beginner-friendly design and its strong focus on collaborative model
development, as well as its goal of providing value not just for ML researchers but also for
researchers, practitioners, and educators from non-technical disciplines.

3. Model Share AI
AIMS provides standardized ML project spaces (Model Playgrounds; see Figure  1) with
accessible MLOps features designed to support collaborative model development, model
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Figure 1.  A Model Playground is a standardized ML project space, representing a ML task that is
associated with a specific dataset and a task type (classification, regression). A Model Playground
includes Experiments and Competitions for collaborative model development, a model registry with model
metadata and user-generated code, as well as deployment functionalities including a live REST API and
pre-built web-apps.

metadata analytics, and model deployment, as well as a host of other functions aiming
to maximize the real-world impact of ML research. As such, it simplifies, combines, and
extends the capabilities of current solutions in 4 important ways:

1. Collaborative model development: AIMS facilitates collaborative model development
and crowd-sourcing through standardized model evaluation procedures, experiment
tracking, and competitions.

2. Model registry: AIMS hosts model objects, as well as model metadata, automatically
extracted from each model submission, enabling users to analyze which modeling
decisions lead to high performance on specific tasks.

3. Model deployment: Model deployment is simplified considerably, allowing users to
share their models into live REST APIs and pre-built web apps directly from their
Python training environments with just a few lines of code.

4. AIMS provides a wide range of supporting functionalities, including workflows for
reproducibility, data sharing, code sharing, creating ML project portfolios, and more.

3.1. Key Functions

3.1.1. Collaborative Model Development

A key feature of AIMS is its focus on collaborative model development and crowd-
sourced model improvement, enabling teams to iterate quickly by allowing collaborators
to build on each other’s progress, even across libraries. For supervised learning tasks, users
can collaboratively submit models into Experiments or Competitions associated with a
Model Playground project in order to track model performance and rank submissions in
standardized leaderboards according to their evaluation metric of choice. Experiments and
Competitions are set up by providing holdout evaluation data against which the predictions
of submitted models are evaluated. Standardized model evaluations allow collaborators to
track the performance of their models along with a wide range of model metadata that
are automatically extracted from submitted models and added to the model registry (see
section below). Out of the box, AIMS calculates accuracy, f1-score, precision, and recall
for classification tasks, and mean squared error, root mean squared error, mean absolute
error, and 𝑅2-scores for regression tasks. The main difference between Experiments and
Competitions is that a proportion of the evaluation data is kept secret for Competitions,

July 10, 2024 218



Model Share AI  | Peters & Parrott, 2024

preventing participants from deliberately overfitting on evaluation data. Being able to
submit models into shared Experiments enables ML teams to standardize tasks, rigorously
track their progress, and build on each other’s success, while Competitions facilitate crowd-
sourced solutions. Both Experiments and Competitions can be either public (any AIMS user
can submit) or private (only designated team members can submit). Users can deploy any
model from an Experiment or Competition into the REST API associated with their Model
Playground with a single line of code.

3.1.2. Model Registry

Model versions are made available for each Model Playground and comprehensive model
metadata are automatically extracted for each submitted model. In addition to evaluation
metrics, this includes hyperparameter settings for Scikit-Learn models and model archi-
tecture data (such as layer types and dimensions, number of parameters, optimizers, loss
function, memory size) for Keras and Pytorch models. Users can also submit any additional
metadata they choose to capture. Model metadata are integrated into Competition and
Experiment leaderboards, enabling users to analyze which types of models tend to perform
well for a specific ML task. Users can either visually explore leaderboards on their Model
Playground page or they can download leaderboards into Pandas data frames to run their
own analyses. There is also a set of AIMS methods designed to visualize model metadata. For
example, models can be compared in a color-coded layout showing differences in model ar-
chitectures and hyperparameter settings. Furthermore, users can instantiate models from
the AIMS model registry into reproducible environments. Taken together, these functions
are designed to streamline the management, collaboration, and deployment of ML models,
enhancing their discoverability, reproducibility, and traceability throughout their lifecycle.

3.1.3. Instant Model Deployment

AIMS currently allows users to deploy ML models built in Scikit-Learn [12], Tensorflow
Keras [13], [14], and Pytorch [15] into live REST APIs rapidly with minimal code. Addition-
ally, users can deploy models from other ML frameworks by transforming them into ONNX
(Open Neural Network Exchange) format - an open-source format for standardized repre-
sentations of ML models with the goal of making them interoperable across platforms.
Each deployed model is associated with a Model Playground page on the AIMS website and
a REST API endpoint hosted in a serverless AWS backend. End-users can either manually
upload data to make predictions using an automatically generated web app on the Model
Playground Page, or they can programmatically query the REST API associated with the
model. In addition to auto-generated web apps, AIMS enables users to submit their own
Streamlit apps. Out of the box, AIMS supports models built on tabular, text, image, audio,
and video data. Allowing users to deploy models with minimal effort and making those
models accessible to even non-technical end-users through web apps holds the promise of
making ML research applicable to real-world challenges.

Figure 2.  Overview of the AIMS architecture. The AIMS Python library allows users to create Model
Playground pages, submit and deploy models, and analyze model metadata. The modelshare.ai website
provides a graphical user interface to explore model metadata and generate predictions via auto-
generated web apps. All required resources are automatically generated in scalable serverless cloud
infrastructure.
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3.2. Architecture

AIMS consists of three main components: an open-source Python library, user-owned cloud
backend resources, and the AIMS website (see Figure 2). The AIMS Python library is the
main interface allowing users to set up Model Playground pages (including Experiments
and Competitions), submit and deploy models, analyze model metadata, and reproduce
model artifacts. It provides an accessible layer that facilitates the creation of the cloud
backend resources that power REST APIs, as well as model evaluations and model meta-
data extraction. The ModelPlayground() class acts as a local representation of a Model
Playground page and its associated REST API. It provides a range of methods to configure,
change, and query Model Playground resources. A detailed overview of the Python library
is provided below (AIMS Workflow).

The cloud backend hosts model objects and associated artifacts in S3 storage, while REST
APIs are deployed into serverless lambda functions. Lambda functions are programs or
scripts that run on high-availability AWS compute infrastructure. They can be invoked
by various event sources (e.g., API calls) and scale automatically based on the volume
of incoming requests. This means that users do not have to maintain servers, and they
only pay for the time and resources actually consumed, but not for idle time. The AIMS
Python library allows users to automatically generate and deploy lambda functions based
on specific properties of their ML tasks, without the need to explicitly manage any AWS
resources. The most important lambda functions in the context of AIMS are the Evaluation
Lambda, which computes evaluation metrics and extracts model metadata from submitted
models, and the Main Lambda, which computes predictions on data submitted through
the REST API. Runtime models are automatically packaged into Docker containers that run
on lambda. Additionally, certain metadata are stored in a centralized Redis database that
powers the modelshare.ai website.

The AIMS website hosts user profile pages, model pages, web apps, example code, and a
documentation page, as well as user-generated code and documentation for their specific
ML projects (see Supplementary Information A-E).

3.3. AIMS Workflow

The AIMS workflow is designed to help teams collaboratively and continuously train, eval-
uate, improve, select, and deploy models using standardized ML project spaces or Model
Playgrounds. After training a model, users submit their model to a Competition or Exper-
iment associated with a Model Playground. The model is then automatically evaluated, and
model metadata are extracted. Evaluations and metadata are made available via a graphical
user interface on the Model Playground page or can be queried using the AIMS Python
library, enabling users to analyze which types of models perform well on a given learning
task. This information can then be used to either improve the training process and submit
more models or to select a model and instantly deploy it with a single line of code. Deployed
models can easily be swapped out if they degrade over time or if they are outperformed by
new submissions. An overview of the process can be found in Figure 3.

In order to use AIMS, users first need to create an AIMS user profile and generate credentials
through the AIMS website. Additionally, users are required to generate AWS credentials if
they wish to deploy models into their own AWS resources.

The AIMS workflow is centered around the concept of Model Playgrounds. A Model Play-
ground is a standardized ML project space, representing an ML project that is associated
with a specific dataset and a task type, such as classification or regression. A Model Play-
ground is first instantiated locally using the ModelPlayground() class of the AIMS Python
library. Here, users need to specify the input_type (tabular, text, image, audio, etc.) and
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Figure 3.  MLOps workflow with AIMS. Users iteratively train, submit, evaluate, and analyze their
models. As contributors have access to model evaluations, model architecture metadata, and reproducible
model objects of previous submissions, they can rapidly develop high-performing models. Submitted
models can easily be deployed into live REST APIs. Deployed runtime models can be monitored and
seamlessly be swapped out against newly submitted models.

the task_type (classification, regression), as well as select whether their Model Playground
should be public or private. Private Model Playgrounds can only be accessed by invited
collaborators, whereas public Model Playgrounds are open to all AIMS users. After instan-
tiating their Model Playground object, users can create an online Model Playground page
by calling the create() method and submitting their evaluation data. This generates a fully
functioning Model Playground Page on the AIMS website, including a placeholder REST API,
and enables users to submit models into associated Experiments and Competitions.

Once a Model Playground Page is created, users can start submitting models to Experiments
or Competitions and deploy models into the Model Playground’s REST API. A model submis-
sion includes a model object (Scikit-Learn, Keras, PyTorch, ONNX), a preprocessor function,
and a set of predicted values corresponding to the previously submitted evaluation data.
The predictions are then evaluated against the evaluation data, and model metadata are
automatically extracted from model objects. Users can submit additional metadata in dic-
tionary format using the custom_metadata argument of the submit_model() method. After
submitting one or more models, users can explore evaluations and model metadata on the
associated Model Playground page or query this information for further analysis using the
get_leaderboard() and compare_models() methods. To inspect and improve models, users
can instantiate models from the leaderboard using the instantiate_model() method. Alter-
natively, users can instantly deploy a model using the deploy_model() method by referring to
the model’s leaderboard version number. Additionally, users should submit example data,
which will help end-users format their input data correctly, and y training data to help
the web app and prediction API transform raw model outputs into the correct labels. As
mentioned above, the process does not stop when a model is deployed. Users can submit
and analyze more models, informed by previous submissions, and easily monitor and
swap out the runtime model using the update_runtime_model() method. An overview of the
model deployment process, including code, is available in Figure 4. Detailed tutorials and
documentation can be found in Supplementary Information A.

4. Impact
Collaborative model improvement and crowd-sourcing are important, not only because
they make teams more efficient but also because they foster diverse perspectives. Such
collective efforts can contribute to the democratization of ML, provide access to resources
for a wider audience, and enable community-driven innovation. For instance, the AIMS
Competition feature can facilitate crowd-sourced research projects in various disciplines
utilizing the common task framework. Relatedly, the AIMS model registry promotes discov-
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Figure 4.  Model deployment process: Models can be deployed with just a few lines of code. After instan-
tiating a local Model Playground object, users can create a Model Playground page that is ready for model
submissions. Submitted models are automatically evaluated and can be deployed into live REST APIs.

erability, transparency, and reproducibility by providing a centralized platform for users
to find models and their associated metadata. Sharing model metadata, such as model
architectures, hyperparameters, training data, and evaluation metrics, allows researchers
to verify previous results and build upon each other’s work. The repository also acts as
an educational resource, offering students, educators, and self-learners the opportunity
to study various ML models, techniques, and best practices. For example, AIMS has thus
far been extensively used in classrooms at Columbia University and beyond to organize
challenges, collaboratively work on ML projects, and make models accessible through API
endpoints. In addition, AIMS is positioned to realize several important missions with regard
to model deployment. Firstly, simplifying model deployment is important because it lowers
barriers to entry, allowing more developers, researchers, and organizations to incorporate
ML in their projects. Secondly, easier deployment saves resources and time, so that devel-
opers can dedicate more effort to model training, tuning, and evaluation. Ultimately, a
streamlined deployment process allows users to iterate faster and explore novel ideas in
real-world contexts.

5. Future Work
While AIMS provides a simple approach to collaborative model development and deploy-
ment, there are opportunities for further improvements. Firstly, it is important to strike
the right balance between flexibility and ease of use. A highly flexible platform may allow
researchers to use various ML frameworks and libraries, accommodate a wide range of data
sources and formats, and support custom deployment strategies. However, this flexibility
may come at the cost of increased complexity and a harder learning curve for users. On
the other hand, a more user-friendly solution might provide a simpler, more streamlined
interface but may lack the flexibility to accommodate unique or complex requirements.
By default, AIMS prioritizes standardization and ease of use, making it attractive for
researchers, educators, and data scientists who are interested in quick and lightweight
solutions. For users who want more flexibility, AIMS provides customizations, such as
custom AWS lambda functions, custom containers, and custom metadata submissions. We
will continue to extend the functionality of AIMS to make it useful for a wide range of users
and applications. This includes making the platform compatible with more advanced model
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types, task types, and ML frameworks (e.g., PySpark). Relatedly, future work could include
additional MLOps functionality, including improved pathways for monitoring, model ex-
plainability, continuous retraining, and automated ML (AutoML) [16], [17]. The latter point
is of special interest, as each new model submission contributes to a growing repository
of evaluated, reusable ML models, including rich model metadata. These resources can be
utilized to suggest pre-trained models that are expected to work well for a given task or
enable users to run their own analyses to choose pre-trained models. We hope that AIMS
will become a resource for researchers interested in meta-learning [18], [19] and related
problems. Additionally, we expect AIMS to be used increasingly by researchers from various
disciplines, including social sciences and natural sciences, trying to solve substantive ques-
tions through ML. We are planning to further accommodate their diverse needs in order
to promote cross-fertilization and widespread participation in the promise of applied ML
research.

6. Conclusion
AIMS provides a versatile yet easy-to-use approach to collaborative model development,
model metadata analytics, and model deployment. It enables users to quickly find, analyze,
and collaboratively improve trained ML models, and to share models from their local
environment directly into live REST APIs and pre-built web applications in a single tightly
integrated workflow. Compared to existing solutions, AIMS is intended to lower the barriers
of entry to ML research, making it attractive to a large group of researchers, educators, and
data scientists. We are confident that AIMS will become a widely used tool and maximize
the real-world impact of ML research.
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