
Open Access | https://doi.org/10.25080/GVHT1072

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Supporting Greater Interactivity in the
IPython Visualization Ecosystem
Nathan Martindale ¹ , Jacob Smith ¹ , and Lisa Linville ²

¹ Oak Ridge National Laboratory, ² Sandia National Laboratories

Published Jul 10, 2024

Correspondence to
Nathan Martindale
martindalena@ornl.gov

Open Access

Copyright © 2024 Martindale
et al.. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

Interactive visualizations are invaluable tools for building intuition and supporting rapid
exploration of datasets and models. Numerous libraries in Python support interactivity, and
workflows that combine Jupyter and IPyWidgets in particular make it straightforward to build
data analysis tools on the fly. However, the field is missing the ability to arbitrarily overlay
widgets and plots on top of others to support more flexible details-on-demand techniques.
This work discusses some limitations of the base IPyWidgets library, explains the benefits of
IPyVuetify and how it addresses these limitations, and finally presents a new open-source
solution that builds on IPyVuetify to provide easily integrated widget overlays in Jupyter.

Keywords interactive visualization, UX, python, javascript, web development, custom
visualizations

1. Introduction
As the tech industry and computation-based research continues to gravitate toward using
more and more data to solve problems, the capability to interact with and understand that
underlying data becomes increasingly important. Development of effective visualization
tools and frameworks to address this need has turned into an ecosystem where components
from different sources all work in unison and developers can piece together what they need
for their specific goals. For many reasons, including the ease of organization and allowing
documentation, development, and analysis to all exist in the same place, Jupyter notebooks
[1] have become a common platform for data science workflows, and by extension have
become the common ground where these different tools can coexist. An important piece
to this platform is the ability to interact with and visualize data, which is crucial in many
data science/analysis workflows. Interactive visualization allows users to manipulate and
explore data, which enhances understanding, improves engagement, and often leads to a
quicker intuitive grasp of the data.

IPyWidgets [2], a framework for bridging between the IPython kernel and HTML widgets
within Jupyter, has been particularly influential for enabling interactive visualization.
Many libraries such as Panel [3] and Solara [4] integrate closely with IPyWidgets and thus
contribute to the greater visualization ecosystem within Python. Although a great deal of
progress has been made in this community, a missing element is a more generalized and
flexible approach to aspects of the details-on-demand paradigm. To support this approach,
the authors have developed a library that provides wrapper components that can render
any widget as an overlay on top of other widgets. These components simplify designing
layouts and visualizations that would be difficult to implement from scratch.

In this work, we first discuss IPyWidgets and what makes it such an important piece of the
overall system, as well as some of the limitations encountered when building only with the
base IPyWidgets framework. We then briefly cover some of the available libraries that build
on top of IPyWidgets, highlighting IPyVuetify, which addresses most of the limitations of

July 10, 2024 291

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/GVHT1072
https://orcid.org/0000-0002-5036-5433
https://orcid.org/0000-0002-5036-5433
mailto:martindalena@ornl.gov
mailto:martindalena@ornl.gov
https://orcid.org/0009-0000-4565-2692
https://orcid.org/0009-0000-4565-2692
mailto:smithjw1@ornl.gov
mailto:smithjw1@ornl.gov
https://orcid.org/0000-0003-1319-1056
https://orcid.org/0000-0003-1319-1056
mailto:llinvil@sandia.gov
mailto:llinvil@sandia.gov
mailto:martindalena@ornl.gov
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

base IPyWidgets. Finally, we discuss a library we have open sourced called IPyOverlay and
an example use case that motivated its design.

1.1. Details on Demand

Details on demand is one piece of the “visual information-seeking mantra” of Schneiderman
(1996) describing an overall design approach to building interactive tooling. The general
flow of interaction proposed by this mantra is “overview first, zoom and filter, then details-
on-demand” [5]. Overview ideally starts with broader aggregate visualizations: something
to gain a sense of the general scope, complexity, or shape of the data. From there a user can
identify areas of interest to hone in on with whatever zoom and filter tools are applicable
for their data’s modality. Finally, details on demand means that the user can see or interact
with more in-depth and specific information for pieces of their data, often in the form of
a pop-up window or inset graph. This selective detail capability provides a flexible user
experience that keeps the initial interface uncluttered without sacrificing the ability to
organically explore the data.

A simple and widespread example of details on demand are tooltips. Descriptions of compo-
nents or data point values in visualizations would often create an unusably noisy interface
if they were always visible. Instead, a more concise view is maintained while providing
the necessary information in a spatially relevant view when the user specifically requests
it. Readers viewing the web version of these proceedings can explore a simple example of
details on demand live by hovering over any of the figure references. Figure 1 shows how
hovering over a reference (the demand) opens a window at the cursor that displays the
target of the reference (the details).

2. IPyWidgets
IPyWidgets is a library for implementing user interactivity inside of a Jupyter Notebook.
A key challenge this framework has to overcome is the separation between the Python
kernel and the browser-based Jupyter frontend, which operates through HTML, CSS, and
JavaScript as a web application. Web application development is often a challenging
software engineering problem in its own right, and many Python developers and scien-
tists may not have either the experience or the desire to write custom frontend code in
JavaScript. IPyWidgets addresses this problem by supporting mechanisms for automatic
state synchronization between a Python model and a JavaScript model, expanded on below,
and providing a set of predefined components that a developer can initialize and use in
their Python code. While IPyWidgets has limitations, it is a valuable tool for the scientific
Python community by allowing the combination of two language ecosystems with many
visualization libraries and capabilities.

To highlight the simplicity of IPyWidgets, some minimal examples are provided here. In the
simplest UI cases, IPyWidgets allows wrapping a function call that produces a visual output
based on some set of input parameters with ipywidgets.interactive(), which automatically

Figure 1. A figure demonstrating details on demand in action when a user hovers over the figure
reference for Figure 1.

July 10, 2024 292

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

import matplotlib.pyplot as plt
import numpy as np
import ipywidgets as ipw

def graph(coefficient):
 x = np.arange(0, 10, .1)
 y = np.sin(coefficient * x)
 plt.plot(x, y)

ipw.interactive(graph, coefficient=(0.1, 10.1))

Program 1. Minimal IPyWidget usage for a plot of a sine wave based on one parameter/coefficient. The
interactive() call turns the passed tuple for coefficient into a slider widget with the range set to this
tuple. See Figure 2 for output.

constructs an appropriate input widget for each parameter. In this case, the developer need
not manually initialize any Python widgets, as seen in the below code sample Program 1
and Figure 2.

More complex interfaces often require displaying multiple visualizations and outputs and
may have controls that must interact. Thus, in practice a more common setup might follow
a pattern shown in Program 2, where several user input and output widgets are defined
and placed into a layout widget. UI code is generally event driven, so functionality is
added by attaching event handlers to input widgets with .observe(), which will then call
the associated event functions when the user interacts with the input widget. IPyWidget’s
generic Output widget supports IPython’s set of display functions, and anything that can be
rendered as the output to a Jupyter cell can be placed into a specified output widget.

2.1. State Synchronization

One of the primary challenges that IPyWidgets helps solve is the problem of state synchro-
nization, where updates to variables made on either side of the Python-JavaScript link

Figure 2. A simple IPyWidgets example using interactive(). Every time the slider is moved, the
graph(coefficient) function is called with the updated value and regenerates/displays the new plot.

July 10, 2024 293

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

import ipywidgets as ipw

initialize the widgets
graph1_out = ipw.Output()
graph2_out = ipw.Output()

graph1_param = ipw.FloatSlider(min=0, max=10, value=1) # a parameter only influencing graph 1
graph2_param = ipw.IntSlider(min=0, max=10, value=1) # a parameter only influencing graph 2
both_graphs_param = ipw.IntText(value=1) # a parameter that affects both graphs

create the dashboard layout, combining all the widgets
dashboard = ipw.VBox([
 ipw.HBox([graph1_out, graph2_out]),
 ipw.HBox([graph1_param, both_graphs_param, graph2_param]),
])

event handler functions
def on_graph1_param_change(change):
 with graph1_out:
 print(f"Updating graph 1 based on: graph1_param={change['new']}, {both_graphs_param.value=}")

def on_graph2_param_change(change):
 with graph2_out:
 print(f"Updating graph 2 based on: graph2_param={change['new']}, {both_graphs_param.value=}")

def on_both_graphs_param_change(change):
 with graph1_out:
 print(f"Updating graph 1 based on: {graph1_param.value=}, both_graphs_param={change['new']}")
 with graph2_out:
 print(f"Updating graph 2 based on: {graph2_param.value=}, both_graphs_param={change['new']}")

attach event handlers
graph1_param.observe(on_graph1_param_change, names=["value"])
graph2_param.observe(on_graph2_param_change, names=["value"])
both_graphs_param.observe(on_both_graphs_param_change, names=["value"])

render the dashboard
dashboard

Program 2. An example of a more typical structure for a dashboard with several inputs and outputs that
might have more complicated interdependencies than can be handled with interactive().

are monitored and communicated across when they occur. Based on this communication,
changes to variables in Python are reflected in the browser’s JavaScript and vice versa.
Under the hood, IPyWidgets makes use of backbone.js [6], a model-view-_ (MV_) framework
for JavaScript that implements synchronization between a JavaScript model (where data/
attributes/values for a widget are stored) and a JavaScript view (the code that creates the
visual UI elements the user sees and interacts with in their browser). IPyWidgets connects
to this backbone model via WebSockets, through which model changes and events are sent
as serialized JSON.

Figure 3 shows a simplified view of the communication channels between the Python model
and the JavaScript model/view for an example slider widget. Modifying an attribute on
the Python model sends the modification to the JavaScript model, where any changes that
would modify the visual aspects of the widget are communicated to the JavaScript view
(e.g., a change in the slider value would correspondingly update the position of the slider
indicator within the track). Similarly, a user interacting with the widget (e.g., moving the
slider within the track) updates the JavaScript state, which communicates this change to
the Python model and calls any event handlers listening for changes to the value.

2.2. Common Framework

One of the most important benefits of IPyWidgets is that it provides a low-level framework
abstracting away many of the specifics for how communication between a kernel, server,
and frontend takes place. This framework can be used to design new widgets by providing

July 10, 2024 294

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Figure 3. State mirroring between models and view interaction for an example slider widget.

implementations for the models and view code, without needing to reinvent the various
messaging system mechanisms that solve the state synchronization problem discussed
previously. All of this has allowed many libraries to emerge, providing novel functionality,
a great diversity of new types of widgets, and other frameworks that can support rendering
IPyWidgets within other contexts.

2.3. Limitations

Despite the flexibility of IPyWidgets as a framework and its value as a core-enabling
technology for user interaction, we explicitly highlight some of the limitations of using
IPyWidgets as a library of components alone. These limitations motivate the use of some of
the many existing libraries that extend and build on top of the IPyWidgets framework, as
well as our own work in the IPyOverlay implementation.

2.3.1. Components

The set of default components included in the IPyWidgets library cover all standard form
elements such as buttons, drop-down menus, and text fields, as well as a generic Output
widget. The Output widget can render any of the MIME-types supported by normal Jupyter
cell outputs, including Markdown, images, plots, and even raw HTML. Additionally, there
are basic layout components to stack other widgets vertically, horizontally, or via tabs, all of
which can be nested to allow grouping widgets. Although these components are often more
than sufficient for simple visualizations, more complex interfaces with richer interaction
paradigms can be hard to achieve. Some examples of dashboard elements that cannot
be created with IPyWidgets’ default components include interactive data frames, dialog
windows, and floating buttons.

2.3.2. Events

Another limiting factor for creating more complex interactivity is the type of events that can
be observed on the components. UIs are inherently event-driven; the user interacts with
widgets/visualizations, and these events run code that update the interface. This is most

July 10, 2024 295

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

often implemented by registering “observers” or event-handlers, which tells IPyWidgets to
run a specified function every time a particular event is raised. In practice, for the default
components provided by the IPyWidgets library, this is mostly limited to value changes
(e.g., a slider is moved, the text in a textbox is changed, or an item in a drop-down menu is
selected).

These types of events are sufficient for basic interfaces, but often more complex types
of interactions can greatly enhance the capabilities of a tool. The ability to detect mouse
events can be crucial, enabling possibilities such as highlighting parts of a visualization
when the mouse hovers over a row in a dataframe, or running an analysis when a user has
highlighted a piece of text from a document. These types of user actions are not feasible
with the default widgets.

2.3.3. Custom Styling and Layout

Web pages and dashboards that need more complicated layouts than conventional linear
stacks and grids of elements generally need to use CSS to control positioning. More than
just a mechanism for changing aesthetic and colors, CSS provides rules for structuring the
interface. However, this often comes at the cost of greater code complexity and excessive
layers of nested elements and rule sets. IPyWidgets components have some capability to
modify their CSS but are limited to a subset of rules available through Python attributes.
This makes common style changes easier to work with, but the lack of any direct access to
arbitrary CSS rules limits more complex layouts, namely the ability to float one widget on
top of another.

2.3.4. Custom IPyWidget Complexity

A key benefit of IPyWidgets as a framework is that it allows developers to design, build,
and publish new components that other people can use in place of or alongside the default
widgets. However, the complexity of the infrastructure required to do this with the base
IPyWidgets library still makes it challenging to prototype or put together a one-off custom
component in a project. Several libraries we discuss in the next section have improved
this process substantially, but traditionally a custom component library was developed by
starting from a Jupyter-provided cookie-cutter template [7] in a separate project.

One of the difficulties that comes with a project created in this way is the need to include the
development infrastructure of both a Python and a JavaScript project. JavaScript toolchains
and dependency management can quickly become complicated with the number of pack-
ages, build system tools, and config files often necessary. Prototyping the component can be
a slow process as well, requiring a rebuild on every JavaScript change. Setting up Jupyter to
use these unpublished components requires additional environment management to work
correctly. Finally, custom widgets built through this method often require fairly significant
boilerplate code because the developer is directly in charge of defining all pieces of the
Python model, equivalent JavaScript model, and JavaScript view.

3. Beyond Base IPyWidgets
IPyWidgets as a low-level widget framework has allowed an ecosystem of other libraries
and tools to develop on top of it, dramatically pushing the boundary of what can be
constructed and incorporated into interactive dashboards with relative ease. From general
plotting tools like interactive Matplotlib (ipympl) [8], plotly [9], mpld3 [10], altair [11], and
bqplot [12], to more complex or specialized visualization widgets like pythreejs [13] and
ipyvolume [14] for 3D rendering, ipyleaflet [15] for interactive maps, and ipycytoscape
[16] for interactive networks, there are dozens of packages providing specific components
and bridges to JavaScript visualization libraries. Other libraries such as Panel, Solara, and

July 10, 2024 296

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Streamlit provide more holistic integrations between IPyWidgets and other visualization
techniques, which can support production-style dashboards for use outside of Jupyter
alone. Although these libraries address the limited component set included with IPyWid-
gets, another class of Python packages exists in this ecosystem that completely changes and
improves the workflow for defining new widgets. These workflow improvements eliminate
the need for JavaScript toolchains, and in some cases, they also provide the capabilities
from various JavaScript web frameworks. A few we briefly touch on here are AnyWidget,
IPyReact, and IPyVuetify.

AnyWidget [17] is a recent library that has become influential in the past year. New
widgets can be created by simply extending the Python anywidget.AnyWidget class, defining
the class attributes that are to be synced between the Python and JavaScript models using
the traitlets library [18], and providing a string of JavaScript code that specifies the view
rendering logic. Much of the JavaScript MV* boilerplate code is abstracted away, and com-
ponent development can be done without any JavaScript project infrastructure, specialized
cookie cutter, or separate environment setup. Fundamentally, this type of approach allows
even developing widgets directly within a notebook, rather than doing so in a separate
project. AnyWidget is used in another project called IPyReact [19], which brings the ReactJS
library to support component-based design and allows wrapping many existing React
components.

A similar library we focus on in this work that addresses all of the main limitations of
IPyWidgets is IPyVuetify [20], which brings many of the capabilities of Vue.js into IPyWid-
gets. Vue.js is a web component framework similar to React and emphasises a component-
driven design, where a single Vue file can contain an entire component: the template HTML
to render, the CSS to apply, and the JavaScript to provide any interactivity and mechanisms
to connect it to the rest of the application. Attributes within the HTML can be bound to
JavaScript variables, which makes it possible to easily automate the JavaScript model →
view updates. IPyVuetify brings two main advantages: a large library of flexible premade
components and the ability to easily define new components on the fly using Vue to simplify
the resulting JavaScript code.

3.1. Vuetify Component Library

IPyVuetify is an IPyWidgets port of the Vuetify component library, a set of more than
70 premade material design [21] UI widgets. Most of these components support a fairly
extensive set of attributes and properties to change both appearance and functionality.
More importantly, each IPyVuetify widget generally has multiple types of events that can
be observed. A simple example would be a textbox form input component. In IPyWidgets,
the Text widget can mostly only observe a value change when the user changes the text
inside. The IPyVuetify TextField can additionally raise events for key presses, mouse clicks,
the element gaining and losing focus, as well as any HTML event. This level of control can
be useful, for example, when a text value change triggers a heavy processing task. The
interaction is more responsive when the computation is delayed until the field loses focus
or the user has pressed enter, rather than restarting the computation on every letter the
user adds or removes.

All of the default components in IPyWidgets similarly have more flexible versions and many
additional components in IPyVuetify. Figure 4 shows a small sample of default IPyWidgets
on the left with their corresponding IPyVuetify versions on the right. Also pictured at the
bottom is the Vuetify DataTable, which is an example of a component that is not in the
default IPyWidgets. The DataTable allows interactivity to be added to a table supporting
filtering, searching, and both client/server side pagination. Other examples of useful UI ele-
ments IPyVuetify adds are various layout widgets like navigation drawers, dialog windows,
and steppers.

July 10, 2024 297

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Figure 4. A visual comparison of a few IPyWidget components on the upper left and their corresponding
IPyVuetify components on the upper right. The table on the bottom is a DataTable component, an example
of a widget which does not have a default IPyWidgets equivalent.

Finally, the Python API for every IPyVuetify component includes the ability to set CSS class
and style attributes. The former of these provides access to a long list of predefined classes
for easy and consistent control of colors, spacing, and other attributes. For anything not
covered by these classes or separate attributes already part of the Vuetify components, the
style attribute controls the raw in-line CSS applied to the element.

3.2. Custom Vue Components

IPyVuetify provides clean abstractions and mechanisms for creating custom components.
Similar to AnyWidget, IPyVuetify allows defining a Python model class with synced
traitlets, all of which are automatically available within the JavaScript code. In IPyVuetify’s
case, the frontend code is expected to be a string of Vue code or a path to a Vue file, which
allows for fairly self-contained HTML, JavaScript, and styling. The design of Vue.js lends it-
self well to reducing boilerplate by allowing bindings in the HTML to directly refer to Python
attribute traitlets, removing both the need to specify the attribute in the JavaScript model
as well as the function to update the view from the model. We discuss this further in the
section on implementing IPyOverlay in IPyWidgets. Program 3 exemplifies this, defining a
custom button with a color change on toggle, where the colors can be modified from Python
as well, shown in Figure 5. In this particular example, both the @click event and :color

July 10, 2024 298

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

import traitlets
import ipyvuetify as v

class ColoredToggleButton(v.VuetifyTemplate):
 color1 = traitlets.Unicode("var(--md-light-blue-500)").tag(sync=True)
 color2 = traitlets.Unicode("#AA6688").tag(sync=True)
 state = traitlets.Bool(True).tag(sync=True)

 @traitlets.default("template")
 def _template(self):
 return """
 <template>
 <v-btn
 width="300px"
 :color="state ? color1 : color2"
 @click="state = !state"
 >Press to change color!</v-btn>
 </template>
 """

button = ColoredToggleButton()

render the button
button

Program 3. An example of a custom IPyVuetify component. color1, color2, and state are all part of the
automatically synced models. We can refer to them in the Vue bindings as shown on lines 15 and 16, where
line 16 is an inline event handler that modifies the state property when the button is clicked. Updating
the traitlets on the Python model updates the referenced values in the Vue bindings, e.g. button.color2 =
"var(--md-green-600)" changes the second color programmatically.

property directly bind to the Python attributes, and no explicit JavaScript is necessary.
Finally, IPyVuetify makes it easy to directly call functions across the Python–JavaScript link
by making any Python functions prefixed with vue*available within JavaScript and any
JavaScript functions prefixed withjupyter_ callable from Python.

Figure 5. An instance of the ColoredToggleButton from Program 3. Clicking the button switches to color2,
and modifying the Python property color2 immediately updates the button to the new second color.

July 10, 2024 299

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Figure 6. A dashboard for exploring seismic station data embedded with a self-supervised encoder model.
The background layout is a Matplotlib UMAP and a plotly geographic map. Pictured are three draggable
overlay (“windowed”) Matplotlib plots (with colored bars on top) that provide additional details for user-
selected clusters found within the UMAP.

4. IPyOverlay
IPyOverlay is a Python library the authors have implemented and open-sourced¹ that
uses IPyVuetify to provide several wrapper components for other IPyWidgets. These com-
ponents add novel UI capabilities within the IPython ecosystem designed to enable details-
on-demand interaction paradigms. Namely, we implement support for rendering widgets
on top of other widgets with arbitrary and controllable positioning. This capability enables
techniques such as click-and-draggable overlay windows containing any other widget. An
example of IPyOverlay in action is shown in Figure 6. Throughout this section we will
discuss an example use case where we worked with one of the authors, a seismologist, to
construct a dashboard for exploring models trained on seismic data. This use case led to the
development of IPyOverlay as a library.

The application in this use case is a tool to assist in evaluating how a model internally repre-
sents data from seismic events. Determining properties about a seismic event’s source is a
critical part of analyzing and interpreting observed seismic signals, and large deep neural
networks are increasingly useful for this task. Qualitatively assessing how well trained
models perform on these types of problems, both as a model developer as well as an end
user, requires hypothesis testing that visualization can help make substantially easier.

In this use case, the dashboard is constructed with IPyWidgets and IPyOverlay, taking
advantage of the techniques described in this section, to determine the success of training a
model to meet our domain-specific criteria. More specifically, we use Barlow Twins [22] as a
self-supervised learning objective to try to force a model’s learned representations to reflect
source properties rather than other observational characteristics. For example, different
geographic locations will observe slightly different signals of the same source event based
on geological differences in the paths to those locations from the source. An ideal model
would exhibit path invariance and represent these signals similarly. We use the constructed
visualization tool along with metadata (information other than the timeseries the model
was trained on, e.g. event location, depth, distance) to understand how well the training
objective succeeds in learning invariance to the metadata attributes that are unrelated to
the event source properties. Additionally, we use the dashboard to help end users under-
stand how well the model generalizes to new sources and to explore uncertainty.

¹https://github.com/ORNL/ipyoverlay

July 10, 2024 300

https://github.com/ORNL/ipyoverlay

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

The dashboard includes a UMAP [23] plot of signals embedded by the model under explo-
ration. Each datapoint is a single observed seismic signal, and these data points are then
clustered with DBSCAN [24]. Metadata attributes aggregated by cluster can be explored by
clicking within the UMAP ipympl plot, which aids in determining how much correlation
exists for those attributes within that cluster. Invariant properties would tend to show as
spread out distributions, while attributes that heavily inform a models’ embedding would
tend to cause clustering and produce narrow distributions.

4.1. Implementing in IPyWidgets

Within base IPyWidgets, there is no straightforward way of constructing a layout in which
one widget is overlaid on top of another. Certain other libraries have limited functionality
for this within their own widget instances. For example Matplotlib and plotly can display an
axes within another axes. Furthermore, many libraries support basic tooltips with arbitrary
textual content. Others such as IPyVuetify support certain types of limited “dialog” overlays,
which can contain inner widgets and display overtop of the rest of the webpage, but do
not support the same type of arbitrary positioning necessary for some details-on-demand
approaches.

This limitation seems to arise primarily from the conventional layout mechanisms em-
ployed by many widget libraries, which consists of nesting rows and columns (HBox and VBox
from IPyWidgets) of CSS-flexbox style layouts, or even stricter grid layouts.

These approaches are generally easier to design and work with, and abstract away or
entirely avoid some of the messier CSS layout rules required to render HTML elements
that do not follow an ordered top-to-bottom/left-to-right flow. Fundamentally, to enable
overlay layouts, we implement custom IPyWidget containers that use specific CSS rules to
control for nonlinear layouts, namely relying on absolute positioning (by setting position:
absolute), and each child widget setting left and top CSS properties to have pixel-level
control of its location relative to the parent container. A diagram demonstrating this design
principle is shown in Figure 7.

Figure 7. Component wrappers provided by IPyOverlay (discussed in the following section) demonstrat-
ing how the positioning works for absolutely positioned child widgets.

July 10, 2024 301

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

4.2. Embedding IPyWidgets in IPyOverlay Containers

A key enabler is IPyVuetify’s ability to embed other IPyWidgets inside of the template
HTML, allowing us to construct custom layouts of one or more child widgets, similar to HBox
and VBox in IPyWidgets. In effect, we can wrap any other widget with custom HTML, CSS,
and JavaScript. The Vue framework is particularly well suited to concise implementation
with this approach. Vue-flavored template HTML supports binding reactive properties on
attributes (e.g., <div :width="some_JS_variable_name">), meaning we can reference any model
variables in the template syntax, and any time those attributes update, the corresponding
HTML is automatically updated without other code having to monitor and orchestrate
the JavaScript model → view update. Additionally, Vue’s template syntax supports several
programmatic control structures such as looping (v-for) and conditionals (v-if), all of which
combined allows declaratively constructing a bound list of child widgets each wrapped in
custom HTML that reactively responds to list updates and other model property changes. A
simplified example is shown in Program 4.

Our primary contribution with IPyOverlay is an OverlayContainer widget, which creates
a container <div> tag embedding a background (nonoverlay) widget, which can consist
of a more traditional grid-like layout of nested rows/columns of other IPyWidgets, and
absolutely positioned floating <div> tags for each child widget. To support additional
functionalities in any of the child overlay widgets, such as the ability to click and drag to

<template>
 <div class="ipyoverlay-container">
 <!-- iterate and create a div container for every child in the python model
 (children is a list of IPyWidgets) -->
 <div v-for="(child, index) in children"
 class="ipyoverlay-child-container"
 :style="{ left: childPosLeft[index]+'px', top: childPosTop[index]+'px' }"
 >
 <!-- embed the IPyWidget -->
 <jupyter-widget :widget='child' />
 </div>
 </div>
</template>

<script>
module.exports = {
 data() {
 return {
 // any values in the data dictionary can be used reactively within
 // the template HTML
 childPosLeft: [],
 childPosTop: [],
 };
 },
}
</script>

<style>
.ipyoverlay-container {
 display: block;
}
.ipyoverlay-child-container {
 display: block;
 position: absolute;
}
</style>

Program 4. A simplified version of the Vue template for OverlayContainer. The <div> tag with v-for
reactively produces a <div> tag for each widget in the children list attribute within the Python model. Note,
the style attribute is bound and references the position arrays on lines 21–22. Changing the position of
each overlay widget is done by modifying the corresponding values in these arrays. We keep these arrays
only on the JavaScript side to prevent undue traffic between the Python and JavaScript models from high-
frequency events (e.g., mouse movements) that can cause significant lag in the interface.

July 10, 2024 302

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Figure 8. Three DecoratedWidgetWrapper widgets, each wrapping an ipympl widget with more in-depth
plots detailing distributions of attributes within selected clusters.

move them, we provide a WidgetWrapper (clicking anywhere within begins the drag) and
a DecoratedWidgetWrapper (a bar is rendered above the widget which can be clicked and
dragged to move the entire widget.) An example is shown in Figure 8, where the background
widget is an ipympl Matplotlib plot and three DecoratedWidgetWrapper’s that embed additional
ipympl Matplotlib plots are floating freely above the background.

4.3. Connection Lines

A potential concern with free-floating details-on-demand overlays is the dissociation from
the underlying data: if a user opens more than a couple overlays that correspond to specific
pieces of an underlying visualization, it is easy to lose track of the overlay widgets and
the pieces they are associated with. In the example use case, clicking on a cluster within
the UMAP opens distribution plots for data within that cluster. Because of the number of
clusters, it can be difficult to determine which distribution plot belongs to which cluster.
IPyOverlay adds the ability to render lines connecting overlay widgets to specific pieces of
the background widget (Figure 9).

One end point of the line is always associated with a specified overlay widget and is
automatically updated to the widget’s center whenever it is moved. The other side of the
line can be “attached” in a few different ways, including simply specifying pixel coordinates
within the background, but a significant challenge is locations within dynamic content such
as interactive plots that can be panned and scaled. The conceptual approach to solving

July 10, 2024 303

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Figure 9. The same detail plots as in Figure 8. The overlay widgets have been dragged further out to
show the connection lines to the clusters in the UMAP each is based on.

this for many plotting libraries is to store the x/y data point the connection should point
to, the initial ranges of any plot axes, and current pixel boundaries of the plot within the
container. Then, listening for any events that indicate an axis range has changed, handler
functions can recalculate pixel locations based on the new relative position of the x/y data
point within the new range.

Unfortunately, in practice, the functions necessary to do this for different plotting libraries
can vary substantially as a result of implementation differences. At the time of this writing,
IPyOverlay only supports autoupdating connections for dynamic content inside of ipympl
(Matplotlib) and plotly plots. The authors intend to continue expanding the set of supported
visualization libraries for this particular feature.

4.4. Context Menus

A common form of details-on-demand feature in UI design across most platforms is the
context menu. Generally initiated from a right-click in desktop operating systems and
applications, or tapping and holding on a mobile device, context menus provide a localized
and easy to access palette of possible commands to run at the current location. Complex
dashboards can often have many different possible actions for the user to take, and simply
displaying all of these as buttons may overwhelm or clutter the interface. Alternately, the
actions may be too component/position specific to work well as buttons. Context menus
fill this role by hiding these commands until the user requests them by right-clicking and

July 10, 2024 304

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Figure 10. An activated context menu providing a selection of commands, which can be expanded well
beyond the single possible action that can be taken from a left-click.

supporting different menus when over different components. Displaying a context menu
similarly requires rendering some form of widget over another – IPyOverlay includes a
ContextMenuArea component that can wrap any widget within an OverlayContainer and define
a context menu with options and event handlers for that specific component. In the example
use case, we add a context menu to the scatter plot to allow a user to optionally choose
between displaying a violin plot with the distributions versus the density plots (Figure 10).

4.5. Example Usage

A minimal code example using IPyOverlay’s containers and connection lines is shown in
Program 5. The example renders an interactive ipympl scatterplot of random data, and
clicking on a point renders a connected overlay window with a bar chart of additional data
associated with the point. A screenshot of this output is shown in Figure 11.

5. Conclusion
The prevalence and utility of Jupyter notebooks in data analysis and scientific workflows
has prompted the development of a community of tools for interactive visualization.
IPyWidgets, the backbone that supports much of this ecosystem, provides the mechanisms
for the kernel to mediate communication between Python and JavaScript. A multitude of

July 10, 2024 305

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

import ipyoverlay as ui
import matplotlib.pyplot as plt
import numpy as np

%matplotlib widget

make random data to plot - the first two dimensions are x and y coords
and the latter 3 are associated data we want to see in inset plots
data = np.random.rand(100, 5)

plot the scatter data dimensions
fig, ax = plt.subplots()
ax.scatter(x=data[:,0], y=data[:,1])

make an IPyOverlay Container to wrap the ipympl figure to allow inset plots
container = ui.OverlayContainer(fig.canvas, height="auto", width="auto")

def on_point_click(point_index, event):
 # get the data associated with selected point
 data_point = data[point_index]
 category_bar_data = data_point[2:]

 # create bar chart for selected point
 inset_fig, inset_ax = plt.subplots(figsize=(2,2))
 inset_ax.bar(x=[0,1,2], height=category_bar_data)

 # make a floating IPyOverlay window with the plot and connect it
 # to the selected point's data location
 inset_window = ui.DecoratedWidgetWrapper(ui.display_output(inset_fig), title=str(point_index))
 container.add_child_at_mpl_point(inset_window, ax, data_point[0], data_point[1])

attach the event handler to add the inset plot when any of the specified
datapoints are clicked
handler = ui.mpl.event.on_mpl_point_click(ax, on_point_click, data[:,0], data[:,1], tolerance=.1)

container

Program 5. This snippet wraps an ipympl figure with an OverlayContainer and responds to point clicks
by adding a floating DecoratedWidgetWrapper with an additional plot, connected to the clicked point. Note
that display_output() is a convenience function provided by IPyOverlay that can render a static plot into
a default ipywidgets Output widget.

libraries have built on top of these mechanisms and IPyVuetify in particular offers a collec-
tion of well designed and flexible components to use in dashboards and a straightforward
abstraction for building custom components in projects based on Vue.js. A missing piece
of this ecosystem is the ability to flexibly render localized pop-up windows in support of
details on demand. We developed IPyOverlay to provide this capability through wrapper
components that can arbitrarily position widgets on top of other widgets, opening the door
to more types of visualization and dashboard layouts.

Acknowledgements

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for US govern-
ment purposes. DOE will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-
public-access-plan).

July 10, 2024 306

https://www.energy.gov/doe-public-access-plan
https://www.energy.gov/doe-public-access-plan

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

Figure 11. An ipympl scatter plot of random data with two inset plots showing the additional data
associated with each clicked point in a bar chart.

References

[1] T. Kluyver et al., “Jupyter Notebooks - A Publishing Format for Reproducible Computational Workflows,” in
Positioning and Power in Academic Publishing: Players, Agents and Agendas, F. Loizides and B. Scmidt, Eds.,
Netherlands, 2016, pp. 87–90. [Online]. Available: https://eprints.soton.ac.uk/403913/

[2] Jupyter Widgets, “jupyter-widgets/ipywidgets.” [Online]. Available: https://github.com/jupyter-widgets/
ipywidgets

[3] Philipp Rudiger et al., “holoviz/panel: Version 1.4.2.” [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.
11046027

[4] M. A. Breddels, “widgetti/solara.” [Online]. Available: https://github.com/widgetti/solara

[5] B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in Proceedings
1996 IEEE Symposium on Visual Languages, 1996, pp. 336–343. doi: 10.1109/VL.1996.545307.

[6] Jupyter Widgets, “Low Level Widget Explanation — Jupyter Widgets 8.1.2 documentation.” [Online]. Available:
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Low%20Level.html

[7] Jupyter Widgets, “jupyter-widgets/widget-cookiecutter: A cookiecutter template for creating a custom Jupyter
widget project..” [Online]. Available: https://github.com/jupyter-widgets/widget-cookiecutter

[8] M. Renou et al., “matplotlib/ipympl: Release 0.9.4.” [Online]. Available: https://doi.org/10.5281/zenodo.10974323

[9] Plotly, Inc., “plotly/plotly.py: The interactive graphing library for Python.” [Online]. Available: https://github.com/
plotly/plotly.py

[10] J. VanderPlas, “mpld3/mpld3.” [Online]. Available: https://github.com/mpld3/mpld3

[11] J. VanderPlas et al., “Altair: Interactive Statistical Visualizations for Python,” Journal of Open Source Software,
vol. 3, no. 32, p. 1057, 2018, doi: 10.21105/joss.01057.

[12] The BQplot Project, “bqplot/bqplot.” [Online]. Available: https://github.com/bqplot/bqplot

[13] Jupyter Widgets, “jupyter-widgets/pythreejs.” [Online]. Available: https://github.com/jupyter-widgets/pythreejs

[14] M. Breddels et al., “maartenbreddels/ipyvolume: ipyvolume v0.4.5.” [Online]. Available: https://zenodo.org/
record/1286976

[15] Jupyter Widgets, “jupyter-widgets/ipyleaflet.” [Online]. Available: https://github.com/jupyter-widgets/ipyleaflet

[16] M. Meireles, “cytoscape/ipycytoscape.” [Online]. Available: https://github.com/cytoscape/ipycytoscape

[17] T. Manz, “anywidget.” [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.11182005

[18] IPython Development Team, “ipython/traitlets.” [Online]. Available: https://github.com/ipython/traitlets

July 10, 2024 307

https://eprints.soton.ac.uk/403913/
https://github.com/jupyter-widgets/ipywidgets
https://github.com/jupyter-widgets/ipywidgets
https://zenodo.org/doi/10.5281/zenodo.11046027
https://zenodo.org/doi/10.5281/zenodo.11046027
https://github.com/widgetti/solara
https://doi.org/10.1109/VL.1996.545307
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Low%20Level.html
https://github.com/jupyter-widgets/widget-cookiecutter
https://doi.org/10.5281/zenodo.10974323
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/mpld3/mpld3
https://doi.org/10.21105/joss.01057
https://github.com/bqplot/bqplot
https://github.com/jupyter-widgets/pythreejs
https://zenodo.org/record/1286976
https://zenodo.org/record/1286976
https://github.com/jupyter-widgets/ipyleaflet
https://github.com/cytoscape/ipycytoscape
https://zenodo.org/doi/10.5281/zenodo.11182005
https://github.com/ipython/traitlets

Supporting Greater Interactivity in the IPython Visualization Ecosystem | Martindale et al., 2024

[19] M. A. Breddels, “widgetti/ipyreact.” [Online]. Available: https://github.com/widgetti/ipyreact

[20] M. Buikhuizen, “widgetti/ipyvuetify: Jupyter widgets based on vuetify UI components.” [Online]. Available:
https://github.com/widgetti/ipyvuetify

[21] Google, “Material Design.” [Online]. Available: https://material.io/

[22] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow Twins: Self-supervised learning via redundancy
reduction,” in Proceedings of the 38th International Conference on Machine Learning, 2021, pp. 12310–12320.
[Online]. Available: https://proceedings.mlr.press/v139/zbontar21a.html

[23] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approximation and Projection for Dimension
Reduction.” [Online]. Available: https://arxiv.org/abs/1802.03426

[24] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise,” in Knowledge Discovery and Data Mining, 1996. [Online]. Available: https://api.semanti
cscholar.org/CorpusID:355163

July 10, 2024 308

https://github.com/widgetti/ipyreact
https://github.com/widgetti/ipyvuetify
https://material.io/
https://proceedings.mlr.press/v139/zbontar21a.html
https://arxiv.org/abs/1802.03426
https://api.semanticscholar.org/CorpusID:355163
https://api.semanticscholar.org/CorpusID:355163

	Introduction
	Details on Demand

	IPyWidgets
	State Synchronization
	Common Framework
	Limitations
	Components
	Events
	Custom Styling and Layout
	Custom IPyWidget Complexity

	Beyond Base IPyWidgets
	Vuetify Component Library
	Custom Vue Components

	IPyOverlay
	Implementing in IPyWidgets
	Embedding IPyWidgets in IPyOverlay Containers
	Connection Lines
	Context Menus
	Example Usage

	Conclusion
	Acknowledgements
	References

