

#### joint inversions with the SimPEG framework

#### J. Capriotti<sup>1,2</sup>, L. Heagy<sup>1</sup>, S. Soler<sup>1</sup>, T. Astic<sup>3</sup>

<sup>1</sup>University of British Columbia Geophysical Inversion Facility <sup>2</sup>Colorado School of Mines <sup>3</sup>Kobold Metals



**motivation:** joint inversion methods share enough similarities that a common framework is feasible and useful



what SimPEG solves...

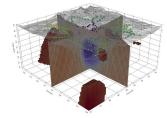
inversion as optimization

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$
  
s.t.  $\phi_d \le \phi_d^* \quad \mathbf{m}_L \le \mathbf{m} \le \mathbf{m}_U$ 

requires:

- numerical simulation
- computation of sensitivities
- definition of regularization functional
- optimization machinery




#### Simulation and Parameter Estimation in Geophysics

An open source python package for simulation and gradient based parameter estimation in geophysical applications.

#### Geophysical Methods

Contribute to a growing community of geoscientists building an open foundation for geophysics. SimPEG provides a collection of geophysical simulation and inversion tools that are built in a consistent framework.

- Gravity
- Magnetics
- · Direct current resistivity
- Induced polarization
- Electromagnetics
  - Time domain
  - Frequency domain
  - Natural source (e.g.
    - Magnetotellurics)
  - Viscous remanent magnetization
- Richards Equation

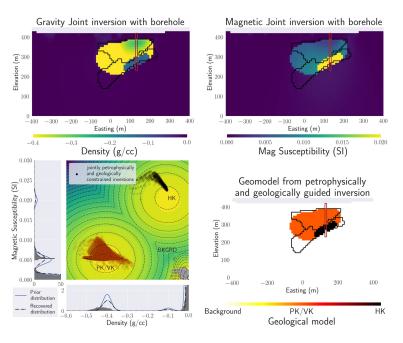


$$\phi(m_1, m_2, \ldots) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + \ldots + \beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + \ldots + \lambda \phi_{sim}(\mathbf{m})$$

$$\phi(m_1, m_2, \ldots) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + \ldots$$
$$+ \beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + \ldots$$
$$+ \lambda \phi_{sim}(\mathbf{m})$$

Multiple data misfits

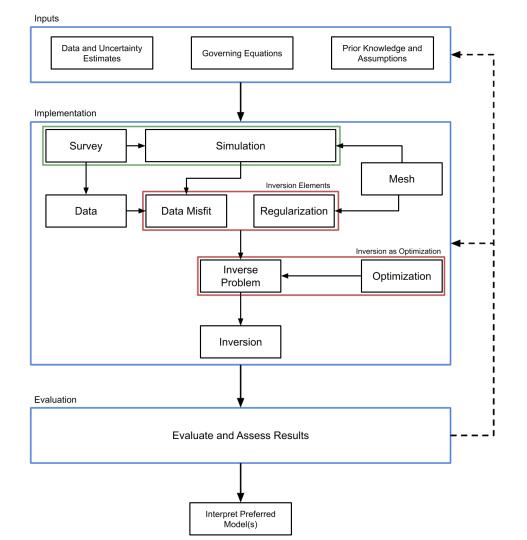
$$\phi(m_1, m_2, \ldots) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + \ldots$$
$$+\beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + \ldots$$
$$+\lambda \phi_{sim}(\mathbf{m})$$


Multiple regularization functions

$$\phi(m_1, m_2, ...) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + ... \\ + \beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + ... \\ + \lambda \phi_{sim}(\mathbf{m})$$

Similarity measure

#### joint inversion methodologies


- structural approaches
  - structural similarity Haber and Oldenburg 1997
  - o cross-gradient Gallardo and Meju 2003
  - structural gramian Zhdanov 2012
  - joint total variation Haber and Gazit 2013
  - 0 ...
- physical property based approaches
  - o gramian Zhdanov 2012
  - correspondence mappings Haber and Gazit 2013
  - mutual information Pluim et. al. 1999
  - fuzzy c-means Lelièvre et. al. 2012, Sun and Li, 2015
  - petrophysically guided inversion Astic et. al. 2021



(Astic & Oldenburg, 2019)

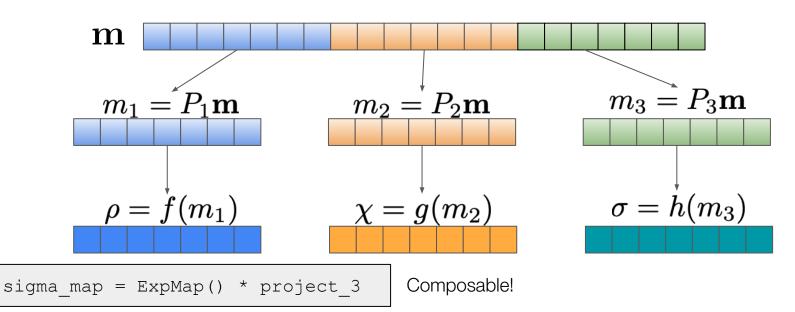
0 ...

#### SimPEG framework



#### simulations

All simulations share a common calling convention


- forward modeling:  $\phi_d(\mathbf{m}) = |W_d(F(\mathbf{m}) - \mathbf{d})|^2$
- jacobian vector operations

$$J(\mathbf{m})\mathbf{v}$$
$$J_{ij} = \frac{\partial d_i}{\partial m_j}$$

| ••• •                                                                                                                                                                                                                                                       | 0 2 â docs.simpeg.xyz C ③ 🖞 + 🖻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                             | Started User Guide API Reference Release Notes SimPEG & More * Q 🔯 O # O 🚥 🛩 \Xi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Section Navigation<br>Potential Fields<br>Electromagnetics<br>Fluid Flow<br>Seismic<br>Base SimPEG Classes (SimPEG)<br>Regularization<br>(SimPEG.regularization)<br>Utility Classes and Functions<br>(SimPEG.utils)<br>Meta SimPEG Classes<br>(SimPEG.meta) | API Reference API Reference API Reference Caracterization and the set of th |

#### mappings

- transforms the inversion model to physical properties.
- automated chain rule derivatives
- joint inversions make use of Projections to select pieces of the model



#### objective functions

Composable objective functions

- Allows use of arbitrary minimizers (but most commonly use Gauss-Newton)
- Construct total objective function just like the math

$$\phi(m_1, m_2, \ldots) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + \ldots + \beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + \ldots + \lambda \phi_{sim}(\mathbf{m})$$

```
obj = (
    chi_1 * data_misfit_1 + chi_2 * data_misfit_2
    + beta_1 * reg_1 + beta_2 * reg_2
    + lamb * cross_grad
)
```

#### directives

A list of rules on how to modify parameters during the inversion

Directive: Balance the multiple data misfits

$$\phi(m_1, m_2, \ldots) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + \ldots + \beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + \ldots + \lambda \phi_{sim}(\mathbf{m})$$

#### directives

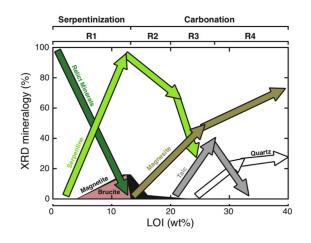
A list of rules on how to modify parameters during the inversion

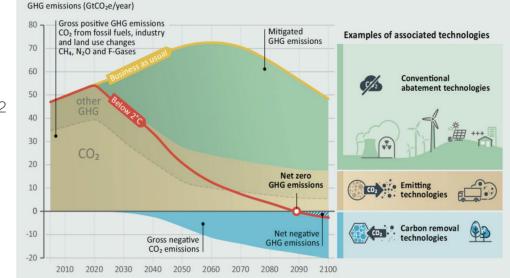
Directive: Cool regularization parameters until target misfit is achieved

$$\phi(m_1, m_2, \ldots) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + \ldots \\ + \beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + \ldots \\ + \lambda \phi_{sim}(\mathbf{m})$$

#### directives

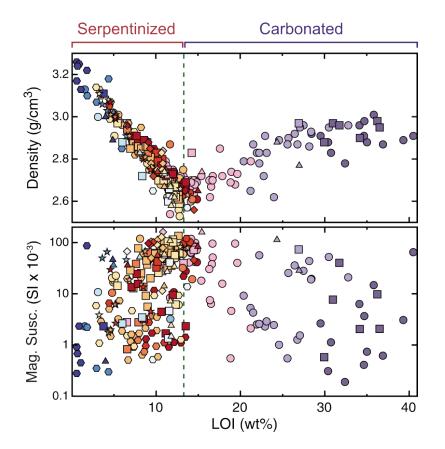
A list of rules on how to modify parameters during the inversion


$$\phi(m_1, m_2, \ldots) = \chi_1 \phi_{d,1}(\mathbf{m}) + \chi_2 \phi_{d,2}(\mathbf{m}) + \ldots \\ + \beta_1 \phi_{m,1}(m_1) + \beta_2 \phi_{m,2}(m_2) + \ldots \\ + \lambda \phi_{sim}(\mathbf{m})$$


Directive: iteratively increase the similarity measure weight while still able to hit target misfits

# geologic storage of CO<sub>2</sub>

sedimentary settings: saline aquifers, depleted O&G reservoirs


carbon mineralization: reaction of  $\rm CO_2$  with mafic, ultramafic minerals



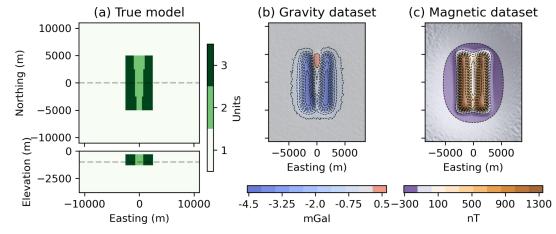


<u>Conclusion 4:</u> If the goals for climate and economic growth are to be achieved, negative emissions technologies will likely need to play a large role in mitigating climate change by removing ~10 Gt/y CO<sub>2</sub> globally by midcentury and ~20 Gt/y CO<sub>2</sub> globally by the century's end.

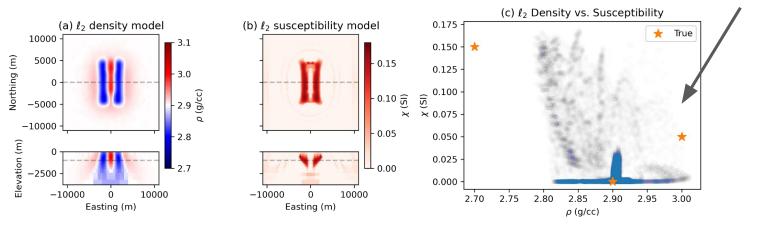
# physical properties



Loss of Ignition (LOI)


- Proxy variable for alteration
- 5%-13%: high carbonation potential
- Density and susceptibility change with LOI

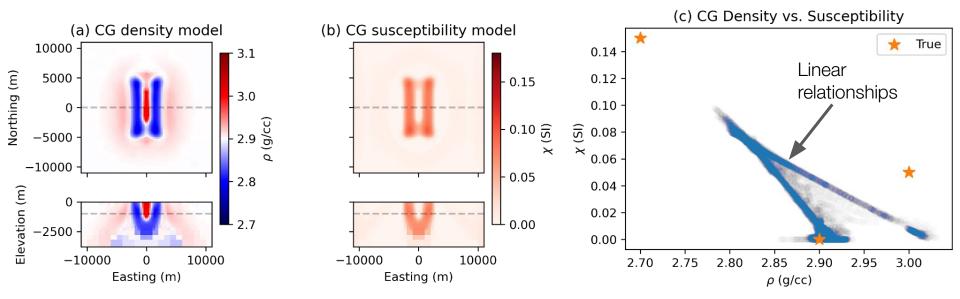
Serpentinized rocks with good potential:


- Low density
- Higher\* susceptibility

## simple synthetic model

- serpentinized region with central carbonated region
- L2 results show poor correlations

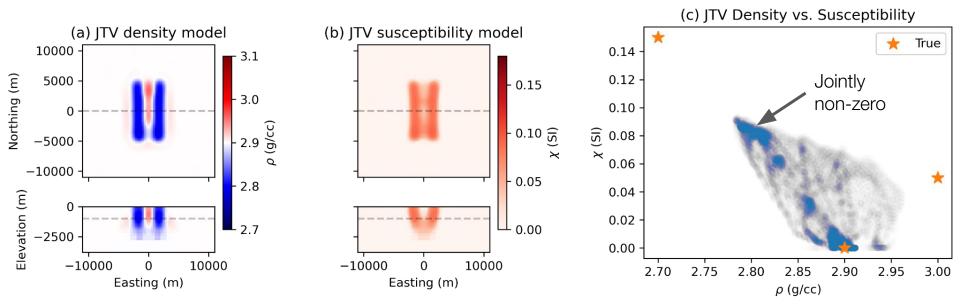







#### cross gradient

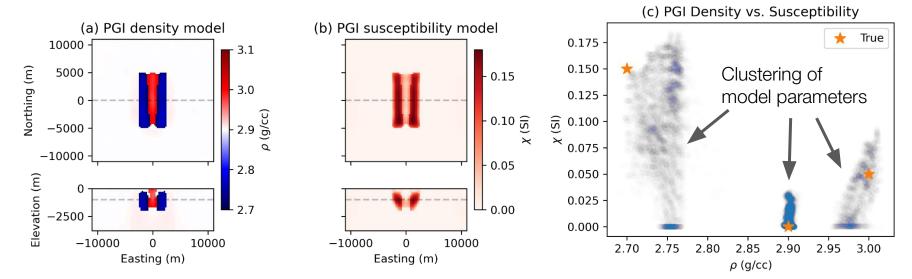
$$\phi_{CG}(m_1, m_2) = \int_V |\nabla m_1 \times \nabla m_2|^2 dV$$


Encourages model spatial gradients to be parallel to each other

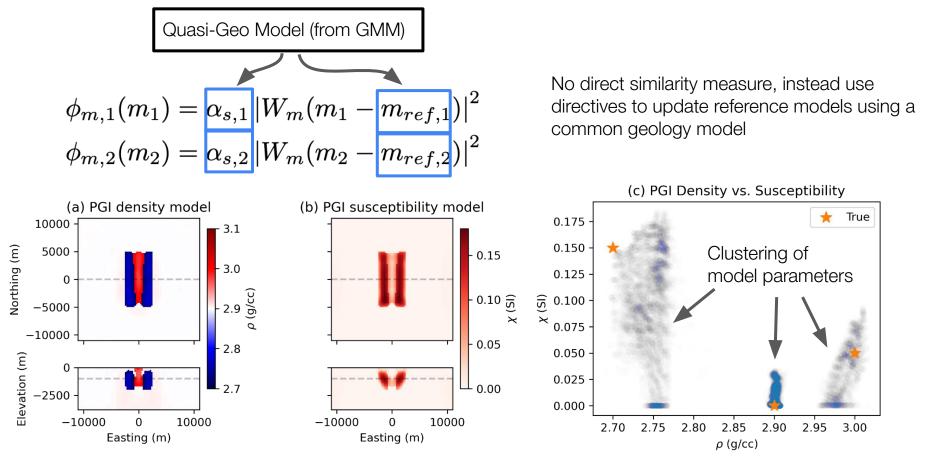


#### joint total variation

$$\phi_{jtv}(m_1, m_2) = \int_V \sqrt{|\nabla m_1|^2 + |\nabla m_2|^2} dV$$

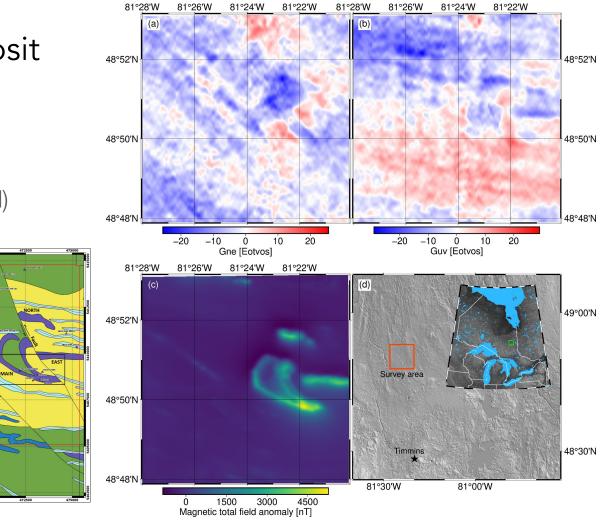

Encourages model spatial gradients to occur sparsely in the same locations



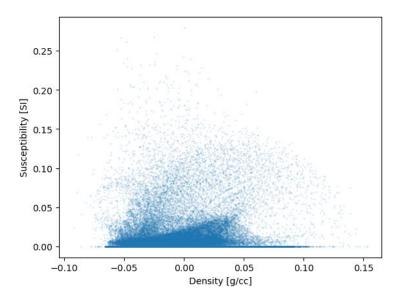

#### petrophysically guided inversion (PGI)

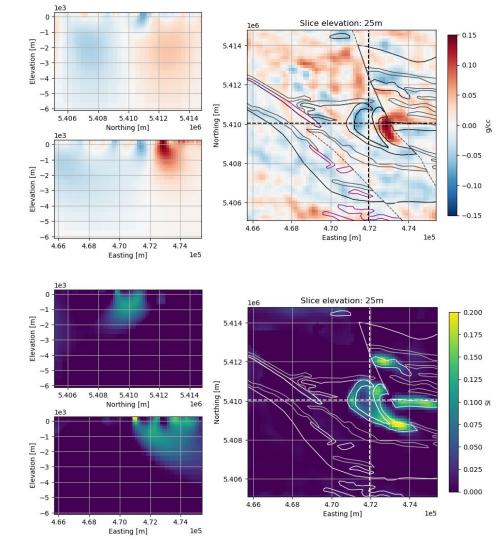
$$\phi_{m,1}(m_1) = \alpha_{s,1} |W_m(m_1 - m_{ref,1})|^2$$
  
$$\phi_{m,2}(m_2) = \alpha_{s,2} |W_m(m_2 - m_{ref,2})|^2$$

No direct similarity measure, instead use directives to update reference models using a common geology model

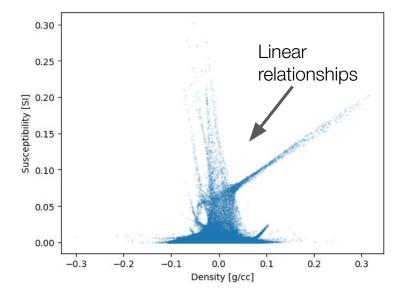


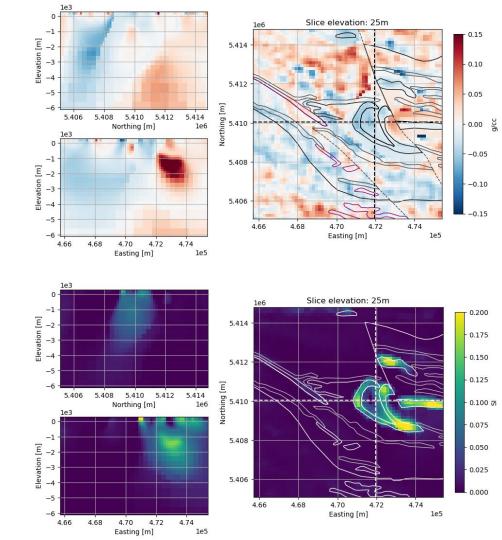

#### petrophysically guided inversion (PGI)



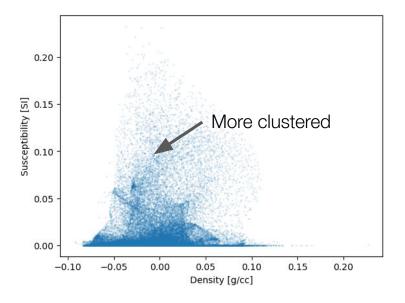


#### Crawford Fe-Ni deposit

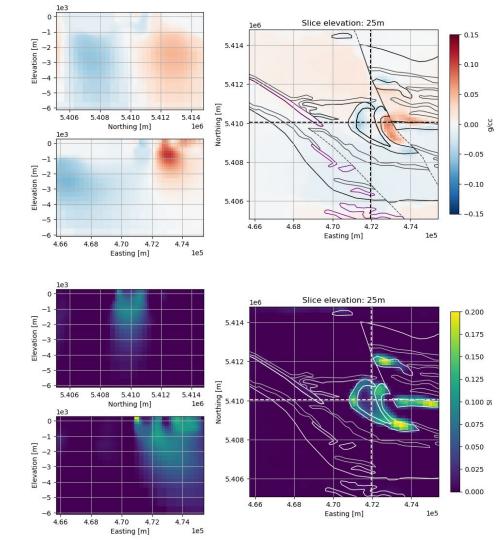
- Falcon Gravity Gradient
- Airborne TMI data
- Ultramafics (Serpentinized)



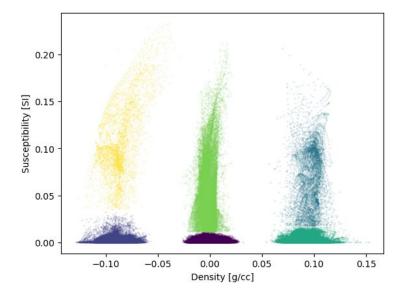


#### separate I2 inversions

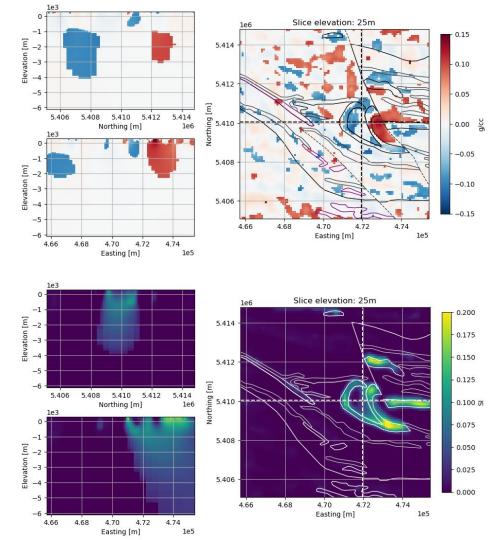






#### cross gradient







#### joint total variation





PGI





#### code comparison

#### Cross Gradient VS JTV



| In [16]: |                                                          | In [: | In [35]: |                                             |  |  |
|----------|----------------------------------------------------------|-------|----------|---------------------------------------------|--|--|
| 1        | # combo                                                  |       | 1        | # combo                                     |  |  |
| 2        | dmis = 10 * dmis_grav + dmis_mag                         |       | 2        | <pre>dmis = 2*dmis_grav + dmis_mag</pre>    |  |  |
| 3        | <pre>reg = reg_grav + reg_mag + lamda * cross_grad</pre> |       | 3        | <pre>reg_grav + reg_mag + lamda * jtv</pre> |  |  |

In [40]:

| _           |       |  |
|-------------|-------|--|
| Tn          | 171   |  |
| <b>T</b> 11 | [ ] ] |  |
|             |       |  |

| 1  | <pre>lower = np.r_[np.full(n_active, -0.8) , np.zeros(n_active) ]</pre> | 1  | <pre>lower = np.r_[np.full(n_active, -0.8) , np.zeros(n_active) ]</pre> |
|----|-------------------------------------------------------------------------|----|-------------------------------------------------------------------------|
| 2  | <pre>upper = np.r_[np.full(n_active, 0.8) ,</pre>                       | 2  | <pre>upper = np.r_[np.full(n_active, 0.8) ,</pre>                       |
|    | <pre>np.full(n_active, np.infty)]</pre>                                 |    | <pre>np.full(n_active, np.infty)]</pre>                                 |
| 3  |                                                                         | 3  |                                                                         |
| 4  | <pre>opt = SimPEG.optimization.ProjectedGNCG(</pre>                     | 4  | <pre>opt = SimPEG.optimization.ProjectedGNCG(</pre>                     |
| 5  | maxIter=20,                                                             | 5  | maxIter=20,                                                             |
| 6  | lower=lower,                                                            | 6  | lower=lower,                                                            |
| 7  | upper=upper,                                                            | 7  | upper=upper,                                                            |
| 8  | <pre>maxIterLS=15,</pre>                                                | 8  | maxIterLS=15,                                                           |
| 9  | maxIterCG=50,                                                           | 9  | maxIterCG=50,                                                           |
| 10 | tolCG=1e-5,                                                             | 10 | tolCG=1e-5,                                                             |
| 11 | tolX=1e-3,                                                              | 11 | tolX=1e-3,                                                              |
| 12 | )                                                                       | 12 | )                                                                       |

#### code comparison

# Cross Gradient vs JTV

Roughly 5 lines of different code

#### Cross Gradient

| 13 |                                                                  |
|----|------------------------------------------------------------------|
| 14 | # Here we define the inverse problem that is to be               |
|    | solved                                                           |
| 15 |                                                                  |
| TD | inv_prob =                                                       |
|    | <pre>SimPEG.inverse_problem.BaseInvProblem(dmis, reg, opt)</pre> |
| 16 |                                                                  |
| 17 | <pre>starting_beta =</pre>                                       |
|    | SimPEG.directives.PairedBetaEstimate_ByEig(beta0_rati            |
|    | o=1E-2)                                                          |
| 10 | 0-10-2)                                                          |
| 18 |                                                                  |
| 19 | # Defining the fractional decrease in beta and the               |
|    | number of Gauss-Newton solves                                    |
| 20 | # for each beta value.                                           |
| 21 | <pre>beta_schedule = SimPEG.directives.PairedBetaSchedule(</pre> |
| 22 | <pre>cooling_factor=3, cooling_rate=1</pre>                      |
| 23 | )                                                                |
|    | )                                                                |
| 24 |                                                                  |
| 25 | # Options for outputting recovered models and                    |
|    | predicted data for each beta.                                    |
| 26 | save iteration =                                                 |
|    | SimPEG.directives.SimilarityMeasureSaveOutputEveryIte            |
|    | ration()                                                         |
|    | racton()                                                         |
| 27 |                                                                  |
| 28 | joint_inv_dir =                                                  |
|    | SimPEG.directives.SimilarityMeasureInversionDirective            |
|    | ()                                                               |
| 29 |                                                                  |
| 30 | <pre>stopping =</pre>                                            |
| 50 |                                                                  |
|    | <pre>SimPEG.directives.MovingAndMultiTargetStopping(tol=1e</pre> |
|    | -6)                                                              |
| 31 |                                                                  |
| 32 | # Updating the preconditionner if it is model                    |
|    | dependent.                                                       |
| 33 | undate jacobi =                                                  |
|    |                                                                  |

#### JTV

| 13 |                                                                                         |
|----|-----------------------------------------------------------------------------------------|
|    | # Here we define the inverse problem that is to be solved                               |
| 15 | <pre>inv_prob = SimPEG.inverse_problem.BaseInvProblem(dmis, reg, opt)</pre>             |
| 16 |                                                                                         |
| 17 | <pre>starting_beta = SimPEG.directives.PairedBetaEstimate_ByEig(beta0_rati o=1E0)</pre> |
| 18 |                                                                                         |
| 19 | # Defining the fractional decrease in beta and the<br>number of Gauss-Newton solves     |
| 20 | # for each beta value.                                                                  |
| 21 | <pre>beta_schedule = SimPEG.directives.PairedBetaSchedule(</pre>                        |
| 22 | <pre>cooling_factor=3, cooling_rate=1</pre>                                             |
| 23 | )                                                                                       |
| 24 |                                                                                         |
| 25 | # Options for outputting recovered models and<br>predicted data for each beta.          |
| 26 | save_iteration =                                                                        |
| 20 | SimPEG.directives.SimilarityMeasureSaveOutputEveryIte ration()                          |
| 27 |                                                                                         |
| 28 | joint_inv_dir =                                                                         |
|    | <pre>SimPEG.directives.SimilarityMeasureInversionDirective ()</pre>                     |
| 29 |                                                                                         |
| 30 | <pre>stopping =</pre>                                                                   |
|    | SimpEG.directives.MovingAndMultiTargetStopping(tol=1e<br>-6)                            |
| 31 |                                                                                         |
| 32 | <pre># Updating the preconditionner if it is model dependent.</pre>                     |

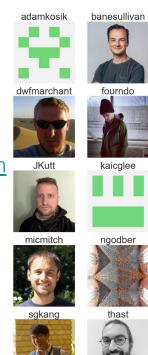
33 update\_jacobi =

#### Conclusions

- We have extended SimPEG to support multiple joint inversions
- Generalized the concept of joint inversions to form a framework
- Framework allows us to easily test different joint inversion methods
- Developed a good sense of how the three methods performed

Future Work

- Further iteration on directives
- More joint inversion methods


#### Acknowledgments

- Mitacs and Mira Geoscience
- Canada Nickel
- SimPEG contributors

### thank you & questions

email: josephrcapriotti@gmail.com slides: <u>bit.ly/capriotti-image-2023</u>







kalen-sj

nwilliams-kobold

timronan







90

bsmithyman





ckohnke

grosenkj

dccowan

ikding

lacmajedrez





















yezhengkai







jedman

jcapriot

Leon Foks lheagy

santisoler

rowanc1



Zhuoliulz